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Abstract 
Introduction: Upper endoscopy is the standard method for diagnosing 
early-stage gastric cancer. However, according to estimates, up to 20% 
of tumors are not detected, and their accuracy may be affected by the 
variability in their performance. In Colombia, most diagnoses take place 
in advanced stages, which aggravates the problem. Protocols have been 
proposed to ensure the complete observation of areas prone to prema-
lignant lesions to address variability. Objective: To build and validate 
an automatic audit system for endoscopies using artificial intelligence 
techniques. Methodology: In this study, 96 patients from a teaching 
hospital underwent video-documented endoscopies, spanning 22 stations 
rearranged to minimize overlaps and improve the identification of 13 key 
gastric regions. An advanced convolutional network was used to process 
the images, extracting visual characteristics, which facilitated the training 
of artificial intelligence in the classification of these areas. Results: the 
model, called  Gastro UNAL, was trained and validated with images of 
67 patients (70% of cases) and tested with 29 different patients (30% of 
cases), which reached an average sensitivity of 85,5% and a specificity 
of 98,8% in detecting the 13 gastric regions. Conclusions: The effective-
ness of the model suggests its potential to ensure the quality and accu-
racy of endoscopies. This approach could confirm the regions evaluated, 
alerting less experienced or trained endoscopists about blind spots in the 
examinations, thus, increasing the quality of these procedures. 
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INTRODUCTION

Gastric cancer (GC) is a significant public health con-
cern. Globally, nearly one million new cases of GC were 
diagnosed in 2022, making it the fifth most common 
cause of cancer-related deaths, with 660,175 fatalities 
recorded in the same period(1). In Colombia, according 
to GLOBOCAN 2022, there were an estimated 8938 

new cases of GC, representing the fourth most frequent 
cancer (7.6%) and the leading cause of cancer mortality, 
with 6901 deaths (12.2%)(1). This places the average mor-
tality rate for GC in Colombia at approximately 11.5 per 
100,000 inhabitants, with even higher rates in the Andean 
region(2,3). The high incidence and the fact that most cases 
are detected at advanced stages make GC a critical public 
health issue.

https://doi.org/10.22516/25007440.1163
https://doi.org/10.22516/25007440.1163
https://orcid.org/0000-0002-2377-6544
https://orcid.org/0000-0003-1957-1615
https://orcid.org/0000-0003-4801-8229
https://orcid.org/0000-0002-5043-0952
https://orcid.org/0000-0001-9009-7288
https://orcid.org/0000-0003-2088-2509


Revista. colomb. Gastroenterol. 2024;39(2):133-145. https://doi.org/10.22516/25007440.1163134 Original article

thorough inspection of the stomach, which could partly 
explain the difference in early-stage tumor detection rates 
between Japan and Colombia. In Japan, approximately 70% 
of cases are detected at this curable stage. In contrast, in 
Colombia, this percentage is minimally representative, as 
over 90% of diagnosed cases are in advanced stages, when 
the disease is potentially fatal(19-23). Therefore, it would be 
desirable for endoscopists to practice a systematic inspec-
tion of the stomach, documenting these 22 specific areas 
to eliminate blind spots or unevaluated regions. However, 
to validate that this is routinely done, a monitoring system 
would be useful to verify the evaluation of all areas or alert 
the endoscopist about regions that may have been missed 
during the examination.

In this context, integrating computational methods into 
medical practice can provide substantial support to gas-
troenterologists, enabling them to routinely perform com-
prehensive and high-quality endoscopies. These methods 
can act as a second reader for the anatomical regions that 
need analysis by the specialist. This second reader could 
identify areas that have not been examined, have been 
incompletely evaluated, or are blind spots in the entire gas-
tric cavity, potentially reducing the omission of precance-
rous and malignant lesions. By verifying whether all anato-
mical landmarks in Dr. Yao’s protocol have been inspected, 
the computational approach can play an essential role. If the 
system detects an incomplete examination, it can function 
as an alert, notifying the specialist that a specific anatomical 
region has yet to be evaluated. This is crucial, as early-stage 
gastric cancer can go unnoticed, often presenting as small 
or subtle lesions that could be overlooked if a specific area 
is not thoroughly examined.

MATERIALS AND METHODS

This study explores the automatic classification of diffe-
rent regions of the stomach that must be reviewed during 
endoscopic procedures using deep learning image classifi-
cation methods. Figure 1 shows the layout of the regions 
of interest in the stomach, accompanied by sample images, 
and illustrates the proposed methodology. The strategy 
used is transfer learning, which leverages a deep learning 
model previously trained with millions of natural images 
to capture low-level visual features (e.g., edges), adapt the 
model’s high-level features to endoscopic images, and use 
them as input for a classification module.

The first stage of the process, feature extraction, involves 
a Convolutional Neural Network (CNN) that has been 
pre-trained on a large dataset of natural images. The second 
stage, classification, involves a set of dense layers trained 
using the specific image set for the problem. The model’s 
output is a softmax layer with 13 neurons corresponding 

Endoscopic technology has advanced significantly in 
recent decades and is now widely used for the diagno-
sis of early gastric cancer (EGC)(4). Esophagogastro-
duodenoscopy (EGD), or upper gastrointestinal endos-
copy, is the preferred procedure for examining the stomach 
for premalignant lesions or cancer. However, it has been 
reported that between 11% and 20% of EGC cases are not 
diagnosed during an EGD(5). This high error rate is pri-
marily due to human factors that can affect the efficacy of 
endoscopy in the early detection of gastric lesions(6).

These factors include the presence of mucus and saliva 
on the gastric mucosa, conducting the examination too 
quickly, and inadequate training of the endoscopist, who 
may not evaluate all areas of the stomach, leaving some 
blind spots(7). Therefore, avoiding blind spots is a fun-
damental prerequisite for the efficacy of endoscopy in 
detecting early-stage gastric cancer(8,9). In general, it is very 
challenging for a trainee physician to acquire the necessary 
skills to maneuver the endoscopic device and interpret 
the observed anatomy; this training requires hundreds 
of supervised procedures(10). In this context, various gas-
troenterology associations worldwide have developed 
protocols to improve the efficiency and quality of the pro-
cedure(11-13). Systematic photography of specific anatomical 
areas of the stomach is recommended as a quality indica-
tor for endoscopic procedures by the British Society of 
Gastroenterology (BSG)(14) and the European Society of 
Gastrointestinal Endoscopy (ESGE)(15). They recommend 
acquiring images in eight specific locations within the sto-
mach. The ESGE suggests an image capture rate (photodo-
cumentation) of over 90% of all anatomical markers as an 
indicator of a complete examination. Meanwhile, the Japan 
Gastroenterological Endoscopy Society ( JGES) imple-
mented a more extensive systematic screening protocol 
of the stomach (SSS)(16), initially described by Professor 
Kenshi Yao, consisting of a series of 22 endoscopic photo-
graphs capturing four areas that cover 100% of the gastric 
surface: the gastric antrum, distal body, middle, and upper 
part of the gastric body(8).

Recently, the World Endoscopy Organization (WEO) 
provided practical guidelines for professionals to conduct 
comprehensive photodocumentation of endoscopic pro-
cedures. This document detailed 28 distinct endoluminal 
areas, covering the entire inner lining of the upper gastroin-
testinal tract, from the hypopharynx to the second portion 
of the duodenum(17). Our study focuses on the gastric 
cavity; therefore, we used Dr. Yao’s guidelines as a reference 
for our research.

Despite the high agreement among experts, these proto-
cols have not been widely disseminated, and many endos-
copists neither visually document nor likely observe these 
regions(15). This situation poses a challenge to ensuring a 
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to the 13 different classes of stomach regions, assigning a 
probability to each class and highlighting the highest as the 
definitive classification for the region in question. For the 
feature extraction stage, a state-of-the-art CNN architec-
ture, such as ConvNext Tiny(24), was used. This architecture 
was selected for its superior performance in a previous 
study compared to 22 other evaluated networks(25).

Acquisition and Preprocessing Protocol

Esophagogastroduodenoscopy and image capture are per-
formed by a highly experienced gastroenterologist with 
over 20 years of practice in endoscopy and a history of 
over 50,000 procedures. This specialist works at Hospital 
Universitario Nacional de Colombia and follows the syste-
matic endoscopy protocol developed by Dr. K. Yao(8). The 
process unfolds as follows: when a patient is scheduled for 
an upper digestive endoscopy, they sign informed consent 

forms for the procedure, sedation, research protocol, and 
image capture before entering the room. They are then 
given a preparation consisting of 10 mL of a solution con-
taining 400 mg of N-acetylcysteine and 200 mg of simethi-
cone approximately half an hour before the procedure. The 
patient is instructed to lie in the left lateral decubitus posi-
tion for 5 minutes, followed by a wait of 20 to 30 minutes 
before entering the procedure room. In the room, a cannula 
is placed in the patient’s right arm, and a certified anesthe-
siologist administers intravenous sedation with propofol. 
Once the patient is sedated, an Olympus series 190 endos-
cope is introduced.

Upon entering the gastric cavity, the endoscope performs 
aspiration of residues from the gastric contents, distends the 
cavity, and proceeds to locate itself in the duodenum. After 
inspecting the duodenum, the pylorus is identified, and the 
endoscope is withdrawn 5 cm to begin photodocumenta-
tion of the antrum. This process starts from the greater cur-

Figure 1. Flow of the proposed method to automatically identify 13 gastric regions. In (I), the endoscopic image database is consolidated and 
categorized into anatomical regions, divided into training, validation, and test partitions. In (II), each training frame feeds a convolutional neural 
network-based model. This model (II-a) is pre-trained with millions of natural images. In (III-b), a densely connected layer is added to the neural 
network, and (III-c) it is pre-trained. In (II-d), neuron layers responsible for information extraction are unfrozen to learn contextual relationships. 
The trained network is evaluated in (IV) to classify each frame into one of the 13 regions of the stomach. Source: Author’s own research.
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wall (photo 14-A4); lesser curvature (photo 15-L3); and 
posterior wall (photo 16-P4). With the endoscope in ret-
roversion, it is advanced along the lesser curvature by 5 
cm to fully visualize it and obtain the following three pho-
tos: anterior wall (photo 17-A5); lesser curvature (photo 
18-L5); and posterior wall (photo 19-P5). Finally, the tip 
of the endoscope is positioned at the incisura and visualized 
in its entirety to obtain the last set of photos: anterior wall 
(photo 20-A6); lesser curvature (photo 21-L6); and poste-
rior wall (photo 22-P6). The results of this documentation 
are presented in Figure 2.

After capturing images of the 22 regions and completing 
the process of assigning labels in an information system, 
the creation of the artificial intelligence model, named 
GastroUNAL in honor of our university, begins. We obser-
ved that some areas are anatomically very similar and often 
overlap, making differentiation difficult. Therefore, in colla-

vature and proceeds clockwise, capturing four overlapping 
photos as follows: greater curvature (photo 1-G1); anterior 
wall (photo 2-A1); lesser curvature (photo 3-L1); and pos-
terior wall (photo 4-P1). The endoscope is then withdrawn 
15 cm and positioned in the distal gastric body, where 
photos are taken in the same clockwise manner: greater 
curvature (photo 5-G2); anterior wall (photo 6-A2); lesser 
curvature (photo 7-L2); and posterior wall (photo 8-P2). 
Next, the endoscope is withdrawn an additional 15 cm and 
positioned in the upper-middle gastric body to continue the 
recording in a clockwise direction: greater curvature (photo 
9-G3); anterior wall (photo 10-A3); lesser curvature (photo 
11-L3); and posterior wall (photo 12-P3). Subsequently, the 
gastroscope is advanced to the corpoantral junction, where 
retroflexion is performed to visualize the cardia and gastric 
fundus. From this position, photodocumentation contin-
ues as follows: greater curvature (photo 13-G4); anterior 
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Figure 2. Protocol for photographic documentation of the stomach, which begins as soon as the endoscope is inserted into the gastric antrum. Using 
the anterograde view, endoscopic photographs are taken of four quadrants of the gastric antrum, lower, middle, and upper body. Then, using the 
retroflex view, endoscopic photographs are taken of four quadrants of the cardia fundus and three quadrants of the upper middle body and gastric 
incisura. In total, the SSS series comprises 22 endoscopic photographs. The arrows represent the unification of labels to obtain 13 categories. A: 
anterior wall; G: greater curvature; L: lesser curvature; P: posterior wall; Q: quadrant. Source: Author’s own research.
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Architecture of the Convolutional Neural Network for 
Describing Endoscopic Images

A Convolutional Neural Network (CNN) constructs a hie-
rarchical representation of distinctive gastric patterns based 
on appearance—such as color and texture—and anatomical 
structures from various perspectives, including gastric folds, 
the lower esophageal sphincter, pylorus, and incisura, among 
others. A CNN is organized as a set of neurons grouped into 
layers, which are sequentially connected from input to out-
put, as illustrated in Figure 1 (II-III). The initial stages of 
these layers take an image as input and decompose it into pri-
mitives, which are extracted by applying convolutions or sets 
of filters designed to capture local patterns. This initial trans-
formation of the image is processed sequentially through 
consecutive layers of additional convolutions, progressively 
selecting relevant information. Throughout this process, 
layers are commonly introduced to reduce dimensionality 
or group information, along with other layers that normalize 
the output of each neuron using activation functions to miti-
gate signal attenuation from sequential processing. This rela-
tively simple process is repeated layer by layer, transforming 
the image into increasingly complex, non-linear patterns 
with fewer statistical dependencies.

The architecture of the network is defined by the number 
of filters, layers, and neurons, which in turn determine the 
number of parameters in the model, typically in the order of 
millions. For this study, we selected the ConvNext Tiny archi-
tecture(24), a convolutional neural network that learns spatial 
relationships at different scales while maintaining the sim-
plicity and efficiency of traditional convolutional networks. 
The ConvNeXt architecture consists of a sequence of blocks 
called Inverted Bottleneck Blocks. Each block includes the 
following components: depthwise separable convolution, 
self-attention mechanism, traditional convolution, layer 
normalization, and GeLU (Gaussian Error Linear Units) 
activation. This architecture incorporates direct connections 
between non-contiguous layers, known as residual blocks, 
which help mitigate the gradient attenuation problem. The 
model’s architecture comprises 27 million parameters, of 
which 11,000 correspond to the fully connected layers of the 
neural network, with the remainder assigned to the weights 
of the convolutional layers.

Classification of Endoscopic Images Using Transfer 
Learning

The performance of a convolutional neural network (CNN) 
in classification tasks significantly depends on the volume 
of data used; training it with a small dataset is ineffective. 
This study implemented transfer learning on the ConvNeXt 

boration with the team, we decided to regroup the 22 zones 
into 13 by merging those that inspect similar areas. The 
grouped regions are described as follows:
•	 Lower body region in L2 and P2, and upper middle 

region in L3 and P3
•	 Lower body region in A2 and upper middle region in A3
•	 Lower body region in G2 and upper middle region in G3
•	 In retroflex view, cardia fundus region in L4, A4, and 

upper middle region in L5, A5
•	 In retroflex view, cardia fundus region in P4 and upper 

middle region in P5

Case Collection and Region Labeling System

The storage, organization, and labeling of endoscopic videos 
and images corresponding to the 22 regions of the stomach 
were carried out using a prototype information system deve-
loped specifically for this study. The system was designed 
based on the functional requirements gathered with the 
guidance of two gastroenterologists. These requirements 
encompass the clinical information needed to document 
an endoscopy study, the strategies for visualizing endosco-
pic videos and images, and the tools necessary for labeling 
these videos and images. The non-functional requirements 
were established collaboratively with a team of three engi-
neers experienced in clinical prototypes. They focused on 
scalability, security, interoperability, and usability to ensure 
stable operation and secure handling of sensitive data. This 
system was developed using the Django web development 
framework in conjunction with the PostgreSQL database 
management system. This combination provides a secure 
and reliable environment for capturing sensitive informa-
tion, such as clinical data. Django incorporates advanced 
security strategies for transmitting data via the web, which 
PostgreSQL then encrypts and stores. According to the 
requirements, the system includes the following modules:
•	 Authentication: Controls user registration and access.
•	 Patient Management: Allows users to view, create, and 

edit information of patients involved in the study.
•	 Endoscopic Procedure Management: Assigns one or 

more procedures to a specific patient, capturing the 
associated clinical information, the video of the proce-
dure, and the informed consent.

•	 Procedure Visualization and Labeling: The system dis-
plays the video of a procedure in a web player (Figure 
3-I) along with the specific frame sequence for the 
current moment of the video (Figure 3-II). When the 
user, in this case, a gastroenterologist, identifies one of 
the 22 gastric regions while viewing the video, they can 
select and label an image or a sequence of images repre-
senting that region (Figure 3-III).
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•	 Classification layers: These fully connected layers are 
trained for the specific classification problem presented 
in this study (Figure 1). The number of neurons in the 
output layer is determined by the number of classes. This 
final layer also provides a confidence score, indicating 
the probability that an image belongs to a specific class 
(Figure 1-IV). The learning process of the network is 
iterative and adaptive, using a relatively low learning rate 
over several iterations (epochs). In each epoch, data bat-
ches are trained until all samples in the training set have 
been processed. The number of epochs is determined by 
the complexity of the classification problem. Finally, the 
training concludes when the classification error on the 
validation data is below a specified threshold.

Databases

The database comprises 96 patient cases who underwent 
EGD procedures. From the white-light videos recorded, 
2054 images were obtained, with their anatomical loca-
tions established as one of the 22 possible regions in the 

architecture, utilizing the extensive ImageNet database as 
the initial information source, which includes more than 
14 million natural images distributed across nearly 20,000 
categories. The ConvNeXt has been rigorously trained and 
validated with these images, leveraging the large volume 
of examples in ImageNet(26,27). Similar to how the human 
visual system constructs a representation of the world 
using visual primitives up to the primary cortex(28-30), and 
learns specific domain associations in higher regions, these 
networks capture the informative units of an image. This 
learned information can then be adapted for this specific 
problem. This process, known as transfer learning, involves 
using the weights of filters learned from millions of natural 
image examples while adapting some layers, usually the last 
ones, to learn from upper gastrointestinal endoscopy ima-
ges. This training consists of three stages:
•	 Frozen convolutional layers: These are layers whose 

parameters are not updated with endoscopic images.
•	 Unfrozen layers: These layers have their parameters 

adjusted by training the network with endoscopic ima-
ges (fine-tuning), resulting in a feature vector output.

I. Video Player 
Procedure 2/8 

Annotated Segment                Start of a Segment                      Segment to Annotate               Segment to Modify 

II. Selection of Image of Interest 

Figure 3. Anatomical Region Labeling System. The video of the procedure is displayed alongside the images associated with the current moment of 
the video, allowing the annotation of the image that best represents the region. Once the image is selected, it is marked in red, and an option to assign 
a label to the image is enabled. Source: Author’s own research.
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care could be used for educational and research purposes. 
This agreement ensures that such data, including anony-
mized images and videos, will be handled with the highest 
standards of confidentiality, security, and custody, in com-
pliance with applicable regulations for this type of research.

RESULTS

This section evaluates the performance of the proposed 
methodology by comparing the predictions of a convo-
lutional neural network with the annotations made by a 
highly qualified expert. The following details the expe-
rimental setup and the quantitative validation scheme 
applied to the proposed approach.

Experimental Setup

Our study involved 96 patients with an average age of 62 ± 
15.5 years. Among these participants, 50.6% were women 
and 49.4% were men. The developed model was evaluated 
using a 70-30 split scheme: 70% of the cases for training 
and validation (67 cases, 1383 images) and the remaining 
30% for testing (29 cases, 671 images). Cross-entropy 
with class weights was used as the loss function to balance 

Kenshi Yao protocol (see the Label column in Table 1)(8), 
later unified into 13 regions. These annotations were made 
by consensus among the group of residents and the head 
of gastroenterology, who has over 20 years of experience 
at Hospital Universitario Nacional. Each frame was cap-
tured with a spatial resolution of 1350 x 1080 pixels. This 
study was conducted in accordance with the principles of 
the Declaration of Helsinki and received approval from the 
Ethics Committee of Hospital Universitario Nacional de 
Colombia (approval number CEI-2019-06-10). A detailed 
description of the database is presented in Table 1.

ETHICAL CONSIDERATIONS

This study was conducted in accordance with Resolution 
008430 of 1993, which establishes the scientific, techni-
cal, and administrative standards for research involving 
humans, as specified in Article 11. This project is classi-
fied as minimal-risk research since it only involves the use 
of digital images generated from anonymized endoscopic 
videos. Therefore, there is no way to identify the subjects 
included in the study.

Study participants provided informed consent, clari-
fying that the information obtained during their medical 

Table 1. Distribution of the EGD Database in Images for the Validation Scheme

Name Label* Training
(n = 58)

Validation
(n = 9)

Test
(n = 29)

Total
(n = 96)

Antrum A1 1 48 7 29 84

Antrum L1 2 48 5 37 90

Antrum P1 3 45 7 30 82

Antrum G1 4 56 7 33 96

Body A2-3 5 114 18 58 190

Body L2-3, P2-3 6 223 39 121 383

Body G2-3 7 114 19 58 191

Cardia–Fundus A4-5, L4-5 8 231 38 120 389

Cardia–Fundus P4-5 9 106 18 58 182

Cardia–Fundus G4 10 54 8 33 95

Incisura A6 11 46 12 31 89

Incisura L6 12 56 10 34 100

Incisura P6 13 44 10 29 83

n: number of patients. *Label: corresponds to the station or grouping. Labels 1-7 are for anterograde view, and labels 8-13 are for retroflex view. Source: 
Author’s own research.
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After the optimization process, the hyperparameters that maxi-
mized the F1 score were found in validation trial 132/200, 
with a batch size of 8, a learning rate of 0.00071, a step size of 7, 
and a gamma of 0.30 for the learning rate schedule.

Quantitative Evaluation

The convolutional neural network (CNN) is designed to 
estimate one of 13 possible anatomical locations for each 
image, as illustrated in Figure 4. These categories corres-
pond to different anatomical regions: the antrum (4 classes), 
the gastric body (3 classes), the cardia fundus (3 classes), 
and the incisura (3 classes). The network’s performance is 
evaluated by comparing its predictions with expert anno-
tations using a confusion matrix that records true positives 
(TP), true negatives (TN), false positives (FP), and false 
negatives (FN). Specific metrics for each class, as well as 
an overall average of these metrics, are calculated from this 
matrix, as presented in Table 2. The results demonstrate 
that the proposed method effectively classifies the 13 clas-
ses, achieving an average accuracy of 86%.

Given that the primary objective of this study is the detec-
tion of anatomical regions, it is important to highlight that 
the method achieves the highest F1 score (94.1%) for the 
cardia region A4-5, L4-5 in the retroflex view (Figure 4). In 
contrast, the class with the lowest F1 score is the gastric body 

the number of samples relative to the predominant class 
(Table 1). This unequal proportion was maintained in 
the test dataset.

The CNN was trained in two stages: a pre-training of 
the classification layers (warm-up) with a constant lear-
ning rate over 10 epochs, and fine-tuning of the last 20% 
of layers over 100 epochs with an early stopping criterion 
of 15 epochs without an increase in the macro F1-score 
metric. The details of the CNN and training configuration 
are as follows:
•	 Pretrained weights: ImageNet
•	 Optimizer: Adam
•	 Loss function: cross-entropy
•	 Dense layers: one dense layer followed by a batch nor-

malization layer, a dropout layer, and finally two dense 
layers with 13 categories

The warm-up and fine-tuning stages were included in a 
hyperparameter optimization with 200 trials, monitoring 
the F1 metric to find the optimal batch size, initial learning 
rate, and learning rate schedule (gamma and step size). The 
values during the optimization were as follows:
•	 Learning rate for pre-training: 0.001 with gamma: 0.1
•	 Range of hyperparameter values during optimization: 

batch size (8-128), gamma (0.1-0.5), step size (5-10), 
and learning rate (1e-3 to 1e-5)

Figure 4. Sensitivity, specificity, and accuracy metrics of the CNN for classifying stomach regions in EGD images into 13 locations. Source: Author’s 
own research.
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G2-3, with 73.7% (Figure 4). This is likely due to the fact that, 
in some cases, the gastric tissue does not present a distinctive 
pattern that allows for precise region localization, a limita-
tion that could be mitigated with a larger training dataset. 
Nonetheless, it is important to emphasize that the proposed 
method demonstrates a strong capability to handle the high 
variability of the various anatomical structures and views.

Table 2. Results for the Proposed Configuration

Metric (%) 13 Stations

Accuracy 85.99

Specificity 98.82

Macro Sensitivity 85.53

Macro Precision 84.73

Macro F1 84.86

Weighted Sensitivity 85.99

Weighted Precision 86.64

Weighted F1 86.07

Source: Author’s own research.

Qualitative Evaluation

Using Grad-CAM (Gradient-Weighted Class Activation 
Mapping), we identified the areas in the images that the 
network considers most representative for distinguishing 
between different anatomical regions. Figure 5 illustrates 
the evaluation of a test case involving the 13 classes.

For the regions of the antrum (A1, L1, P1, and G1), it is 
observed that the pattern of the pyloric sphincter location 
is crucial. For the gastric body regions, the network uses the 
quadrant of the gastric wall. Regarding the cardia fundus, 
the positioning and location of the endoscope determine 
the class structure. Finally, for the incisura (A6, L6, and 
P6), capturing the anterior, middle, and posterior portions 
is crucial for accurate identification.

DISCUSSION

Upper gastrointestinal endoscopy, also known as esopha-
gogastroduodenoscopy (EGD), is the preferred method 
for diagnosing gastric cancer and premalignant lesions. 
Identifying and monitoring these lesions is crucial to pre-
vent this serious disease, necessitating high-quality endos-
copic procedures. EGD is also used as a screening tool for 
early diagnosis of upper gastrointestinal cancer in high-risk 
areas(18). In a study by Hamashima, Chisato, and collea-

gues(31), the impact of endoscopic screening on reducing 
gastric cancer mortality was evaluated. The results indica-
ted that gastric cancer mortality was significantly lower in 
the endoscopic screening group compared to the radiogra-
phic screening and photofluorography groups. The study 
concluded that endoscopic screening for gastric cancer is 
associated with a notable 57% reduction in mortality from 
this disease, highlighting its effectiveness in early detection 
and treatment.

In clinical practice, a systematic approach by a gastroen-
terologist during endoscopy minimizes the likelihood of 
missing areas or having blind spots. However, there is gene-
rally no record of how a specialist performed the procedure, 
whether a minimum number of regions were observed, or 
the duration of observation for each region. Consequently, 
photodocumentation has become an important aspect of 
the EGD report. A recent study found a positive correlation 
between the number of endoscopic images and the detec-
tion rate of clinically significant gastric lesions (p < 0.001). 
In the clinical setting, a trained endoscopist can perform 
systematic and efficient photodocumentation, but this 
requires proper endoluminal orientation through extensive 
prior training and a clean mucosa to ensure optimal visuali-
zation. Inadequate mucosal cleaning can impact the quality 
and integrity of the procedure. Successful photographic 
documentation also demands adequate insufflation and 
equipment control. Additionally, patient movement and 
anatomical variability can influence this documentation. 
Finally, a significant barrier is the storage and analysis of 
images, which remains a common disadvantage of current 
endoscopic equipment(17).

Currently, well-designed studies are needed to examine the 
relationship between the number of images, a specific photo-
documentation protocol, and the neoplasm detection rate 
during EGD(32). However, an Asian consensus on standards 
in upper gastrointestinal endoscopy suggests that methodical 
observation of the upper gastrointestinal tract can improve 
the detection of superficial neoplasms by minimizing unvi-
sualized areas. Additionally, the expert panel concluded that 
current evidence supports the use of simethicone to enhance 
visual clarity during the examination(33). 

In this context, a second reader (artificial intelligence) 
should not only recognize the gastric anatomical regions of 
interest but also ensure they are observed for a minimum 
duration. Thorough inspection of the entire gastric cavity is 
a crucial step in the systematic search for early gastric cancer. 
Consequently, there is a global interest in applying artificial 
intelligence in this area, and some researchers have classi-
fied frames using convolutional neural network (CNN) 
architectures(34). For example, Takiyama and colleagues(35) 
used a GoogleNet architecture to accurately recognize four 
anatomical locations (larynx, esophagus, stomach, and 
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mance of 22 architectures was compared to identify six 
anatomical regions of the stomach, including state-of-the-
art architectures, and the best performance was obtained 
with ConvNext Tiny. This network has around 27 million 
parameters, which would allow its implementation in a cli-
nical setting.

In the present study, we developed an automated audi-
ting system for the endoscopic exploration protocol of the 
stomach using artificial intelligence, enabling the identi-
fication of gastric areas. We achieved a macro sensitivity 
of 85.5% in interpreting the 13 specific areas previously 
described. These results demonstrate the potential effec-

duodenum), as well as three specific sub-classifications for 
stomach images. Wu and colleagues(36) employed a VGG-
16 network to classify gastric locations into 10 categories 
and then refined the classification into 26 anatomical parts 
(22 for the stomach, 2 for the esophagus, and 2 for the 
duodenum). Additionally, Chang and colleagues(37) trained 
a ResNeSt architecture to classify EGD images into eight 
anatomical locations, with an additional location specifica-
lly for the pharynx. However, most proposed architectures 
have a large number of parameters, making real-time task 
resolution challenging, thus necessitating the training of 
smaller architectures. In a previous study(25), the perfor-

Figure 5. Analysis of a convolutional neural network in a test case. The sequence includes an endoscopic image, a heatmap visualizing the importance 
of the areas of the image in the network’s prediction, and the superposition of this heatmap on the endoscopic image to highlight the relevant zones. 
In this case, 13 regions (marked with a green rectangle) were identified with a prediction confidence above 95%, matching the labels assigned by an 
expert. Within the rectangle, A1-P6 corresponds to the region grouping mechanism. A: anterior; G: greater curvature; L: lesser curvature; P: posterior. 
Source: Author’s own research.
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logy could be improved and applied to more anatomical 
regions with an increase in annotated cases. This system 
is expected to become a valuable tool for the recognition 
of stomach regions, alerting to incomplete explorations of 
the gastrointestinal tract and, consequently, ensuring the 
quality of the procedure. Additional studies are currently 
being conducted to further validate and enhance the effec-
tiveness of this system.

Finally, this pioneering study, which to our knowledge 
is the first in Latin America, can guide future research on 
the application of automatic classification to the 22 gastric 
regions recommended by K. Yao(8) or other upper endos-
copy photodocumentation protocols as presented in other 
studies(14,15,17).
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tiveness of artificial intelligence as a valuable tool to assist 
endoscopists in conducting thorough and meticulous exa-
minations of the entire stomach.

Various experts and organizations have proposed guide-
lines regarding the number of images that should be cap-
tured during an EGD. An appropriate number of images 
encourages endoscopists to perform the procedure with 
greater attention, and this information can be used to train, 
validate, and improve the performance of artificial intelli-
gence strategies. This factor is essential to overcome the 
challenge of effectively addressing this clinical problem 
with AI technology.

One of the major limitations of this type of study is the 
lack of a common validation framework, a frequent issue 
in the analysis of endoscopic images, which has limited the 
comparison between existing approaches. It is difficult to 
determine which of these methods could have a real advan-
tage in clinical use.

In summary, this proposal presents a computerized qua-
lity monitoring system that identifies 13 anatomical gastric 
regions (covering the entire gastric cavity) using a convolu-
tional neural network. The performance of this methodo-
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