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ResuMEN. Un conjunto de Sidon es un subconjunto de los enteros con la pro-
piedad que la suma de cada dos elementos es distinta. En 1998, 1. Ruzsa dio
una construccién probabilistica de un conjunto de Sidon infinito cuya funcién
de conteo es zVZ~1to()
dicha construccion.

. En este trabajo mostramos una simplificacién de
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primos gaussianos.
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ABsTrACT. A Sidon set is a subset of the integers with the property that the
sums of every two elements are distinct. In 1998, I. Ruzsa gave a probabilis-
tic construction of an infinite Sidon set whose counting function is given by
V21 1p this work we simplify such a construction.
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1. Introduccién

Un conjunto de enteros positivos S se llama conjunto de Sidon si las sumas de
cualesquiera dos elementos de S son distintas. Por ejemplo, el conjunto de las
potencias de 2 es un conjunto de Sidon infinito. Estos conjuntos aparecieron
en los anos 30 en el contexto del andlisis arménico gracias al trabajo de Simon
Sidon en [4], quién llamé la atencién de Paul Erdos sobre estos conjuntos y desde
entonces han sido de particular interés en teoria de nimeros y combinatoria.
Una buena referencia sobre los resultados y las distintas generalizaciones es [2].

Un problema interesante es determinar la cardinalidad del mayor conjunto

de Sidon contenido en el intervalo [1,z]. Para un conjunto S de enteros posi-
tivos, definimos la funcién de conteo del conjunto S como S(z) = #S N [1,z].
No es dificil observar que si S es un conjunto de Sidon, S(z) < /z.
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114 JUAN PABLO MALDONADO LOPEZ

Utilizando el algoritmo avaro (greedy algorithm) podemos construir un con-
junto de Sidon con funcién de conteo > 2% . Este resultado se puede mejorar. En
[3] I. Ruzsa construy6 un conjunto de Sidon con funcién de conteo gV2-1+o(1) |
Su construccién se basa en el hecho de que los niimeros primos son un conjunto
de Sidon multiplicativo para los enteros; el conjunto de sus logaritmos es un
conjunto de Sidon aditivo de ntimeros reales y un redondeo apropiado de ellos
da un conjunto de Sidon de enteros.

En este trabajo, siguiendo las ideas de la construccién de Ruzsa (y la sim-
plificacién sugerida en [1]), construiremos un conjunto de Sidon con la misma
funcién de conteo. Consideramos los argumentos de los primos gaussianos (los
primos en Z[i]) no reales. Esta sucesién es acotada, lo que simplifica la de-
mostracién. Algunas cotas técnicas que aparecen en el articulo de Ruzsa se
demuestran de manera geométrica. Hemos conservado la notaciéon de Ruzsa
para facilitar la comparacién con el argumento original. En la seccién siguiente
discutimos la construcciéon de un conjunto de Sidon para el caso finito, a fin
de motivar la construccién para el caso infinito y en las dos secciones restantes
explicamos la construccién del conjunto de Sidon infinito. Esta construccién es
probabilistica.

El problema de encontrar un subconjunto infinito grande de Z tal que las
sumas de cada tres elementos sean distintas (donde por grande entendemos que
tiene una funcién de conteo mayor que la que se obtiene con el algoritmo avaro)
permanece abierto.

2. Conjuntos de Sidon finitos

En esta seccién mostraremos como obtener conjuntos de Sidon finitos. El primer
intento natural, como se menciono en la introduccién, es considerar el algoritmo
avaro. Definimos a; = 1 y para k > 1 tomamos aj, de manera que ay ¢ {a; +
aj—a;: 1 <i,j,1 <k—1}. Inmediatamente observamos que ax, < (k—1)3+1 ya
que tenemos a lo mas (k— 1) elecciones prohibidas para {i, 5,1} y entonces con
esta construccién obtenemos un conjunto de Sidon de tamano ~ n3 contenido
en el conjunto {1,2,...,n}. La construccién de un conjunto de Sidon finito
mediante el algoritmo avaro se extiende al caso infinito.

El teorema fundamental de la aritmética nos ayuda a mejorar el exponente
de n.

Seguimos la notacién usual y escribimos |y| para el mayor entero menor o
igual que y y {y} =y — [y].

Teorema 1. El conjunto

2n n .
X = {xp €EN:z, = Lognlong, p < MZIOgn’ P prlmo}

V2n

log3/2 n

es un conjunto de Sidon con ~ elementos paran suficientemente grande.
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UNA NOTA SOBRE CONJUNTOS DE SIDON INFINITOS 115

Demostracion. Veamos primero que este conjunto es un conjunto de Sidon.
Para ver esto, supongamos que se tienen p, g, r, s con {p,q} # {r, s} tales que

Tp + Tqg = Ty + Ts.
sin pérdida de generalidad, pg > rs. Como z, + 4 — 2, — 25 = 0,

2n(logp + log g — log r — log s)
logn N

2nlogp 2nlogq 2nlogr 2nlog s
+ b= - :
logn logn logn logn

Utilizando el hecho de que, para nimeros reales x,y, z,w se tiene la de-
sigualdad

{a} +{y} — {2} — {w} <2 (1)

2n
logn

obtenemos

1og@ <2
rs

de donde
logn Pq

rs

> log

Por otro lado

log ba_ log (1 +
rs

pq — T’S)
rs
1
> log (1 + 7)
rs
1

Z -
2rs

logn

b

n

lo cual es una contradiccién (la primera desigualdad se sigue de que pg > rs,
la segunda desigualdad se sigue de la desigualdad log(1 +z) > § paraz <2y
la tercera desigualdad se sigue de la definicién de r y s).

La segunda afirmacion es consecuencia del teorema de los nimeros primos.

]

El redondeo de los logaritmos de los primos depende de n. Asi que no es
posible utilizar este argumento para construir un conjunto de Sidon infinito.
Ruzsa se inspird en esta construccién y eliminé la dependencia de n. Introdu-
cimos otra construcciéon de un conjunto de Sidon finito para motivar nuestra
variante de la construccién de Ruzsa.
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116 JUAN PABLO MALDONADO LOPEZ

Sea P el conjunto de los nimeros primos congruentes a 1 médulo 4. Para
p € P, escribimos p = a® + b? = (a + bi)(a — bi). La descomposicién de p como
suma de dos cuadrados es tnica y por tanto su factorizacién en Z[i] también
lo es salvo unidades (£1,+i). Sea p, = a + bi tal que p = p,p,, con p, tal
que Rep, > Imp, > 0, donde Re z, Im z denotan las partes real e imaginaria
respectivamente del niimero complejo z. Escribamos ﬁ—z = 2% con ¢p un

ntmero en [0,1). Denotamos con |z| el valor absoluto del nimero complejo
z. La sucesién (¢p)pep s un conjunto de Sidon médulo 27, pues si tenemos
Op + ¢¢ = ¢r + @5, esto implicaria que p, Pgprps = PpPePr Ps lo cual es
imposible si {p, ¢} # {r, s}. Se tiene el siguiente teorema.

Teorema 2. El conjunto

C:{cpeNschngbpj, peP, pg\{f},

No

Tlogn elementos.

es un conjunto de Sidon contenido en {1,2,...,n} con

Demostracion. Supongamos que tenemos cuatro elementos en nuestro con-
junto tales que

CptCqg=20Cr+Cs

con {p,q} # {r,s} y pg > rs. Consideramos
n(fp + ¢g — ¢r — ¢s) = {ndp} + {ngg} — {ngr} — {ngs}. (2)

Observemos que

Pp Pq Prps‘ _ ‘1 _ PpPqPr Ps
PpPq PrPs Pp PaPrps
_ ‘1 _ 2mildptda—br—0:)

§27T|¢p+¢q_¢7*_¢s’
_im

n

donde la primera desigualdad es inmediata de la interpretacién geométrica' y
la segunda desigualdad se sigue de (1) y (2). Por otra parte,
0

1La longitud de la cuerda que une a 1 y e* es menor o igual que 6, la longitud del arco

que subtiende.
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UNA NOTA SOBRE CONJUNTOS DE SIDON INFINITOS 117

PpPa  PrPs| _ | Paprps — Pr DspoPa
PpPq PrPs PpPLqPrpPs
> 1
N
16
> .
n
De las desigualdades anteriores se tiene
16 4rw
o<
n - n

que es una contradiccion. El teorema de los ntimeros primos nos da la cardina-
lidad de C. of

3. La construccion

Sea « € [1,2) y consideramos el conjunto

{agp, €eR:p € P}.
Sea 8 > 1 el nimero real que satisface

2 1

Sea K, > 2 entero tal que

Q(KP_2)2 < pﬁ < 2(Kp_1)2.

Consideramos el conjunto
Py ={peP:K,=K}

Para p € Pk sea

K2
my 1= L2K2a¢pJ = 2517)2}(2*1'
i=1

con ¢;, € {0,1}. Estos nimeros, cuando p varfa sobre P, son el ingrediente prin-
cipal para nuestro conjunto de Sidon. Cortamos este nimero en Ajy,, Agpy, ..
Akp bloques de manera que

*

Revista Colombiana de Matemaéticas



118 JUAN PABLO MALDONADO LOPEZ

y por tanto tenemos

i2

Ap< Y 2fti=or o (3)

j=(i—1)2+1

Reacomodemos estos bloques. De manera informal, ponemos los bloques 1
a K, donde el primer bloque corresponde al primer digito; el segundo bloque, a
los siguientes cuatro digitos; el tercer bloque, a los siguientes nueve y asi suce-
sivamente hasta los tiltimos K2 digitos (de derecha a izquierda) y dejamos tres
espacios entre bloques consecutivos. Ponemos un 1 en el segundo espacio de
derecha a izquierda del K-ésimo bloque. Este 1 es el digito principal de nues-
tro nuevo numero y nos da informacién precisa sobre su tamafno. Por ejemplo,
supongamos que obtuvimos el ntimero 0.10101010111010 al redondear alguno
de los app,. Al cortarlo se obtienen los bloques

A; =1,A9 =0101,A35 = 010111010

y después de agregar los tres ceros y el 1 nos queda

1001011101000001010001

donde los niimeros en negritas corresponden a los digitos que insertamos entre
. . . . 2

bloques consecutivos. Formalmente, si escribimos ¢, := 2K, 3K +2 tenemos el

nimero

KP
ap = Z N2~ DTH30 4 g
i=1
Sea A, = Upep{a,}. Por la eleccién de K, como QR H3K 2 o ap <

2 ’ z . .
2K, 3K 43 gbservamos que ap = pPtoM) Veamos cudl es la razén de introducir

los bloques de ceros. Consideramos la identidad en ntiimeros binarios
1000011 + 100010 = 111011 + 101010

donde los cuatro ntimeros tienen en la misma posicién al digito 0 que escribimos
como en negritas. Al sumar estos nimeros, observemos que el 0 previene de
‘llevar’ unos a los otros bloques, de manera que en cierto sentido los bloques
1000, 100, 111, 101 correspondientes a los iltimos cuatro digitos de cada ntiimero
(de derecha a izquierda) contribuyen a la suma en cada lado de la ecuacién
de manera independiente que los nimeros que estdn al otro lado del 0. De
acuerdo con este argumento, deberiamos tener que 1000 + 100 = 111 + 101 y
11+ 10 = 11 + 10 lo cual es cierto. El hecho de que la suma sea independiente
por bloques nos ayuda a contar el niimero de veces que la ecuaciéon z+y = z+w
tiene soluciones en A,.
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UNA NOTA SOBRE CONJUNTOS DE SIDON INFINITOS 119

Definicién 3. Consideramos el conjunto A, para una eleccién fija de a. Sean
ap, Gq, Gr, as € Ay con p,q,r,s € P tales que

ap + ag = ar + a, 4)

con
ap > ar > a5 > aq. (5)

Decimos que la cuddrupla (p, q,r,s) € P* es una cuddrupla mala.

La desigualdad (5) es una consecuencia de (4) si asumimos que a, es
méx{ay, aq, ar, as}-

Si tenemos una cuaddrupla mala podemos remover el a; correspondiente
al mayor elemento de esta cuadrupla. Haciendo esto para todas las cuddruplas
malas, los restantes elementos de A, forman un conjunto de Sidon. Nos interesa
estimar entonces el nimero de cuadruplas malas.

La manera en que se construyen los elementos de A, ayuda a contar el
nimero de cuadruplas malas.

Lema 4. (p,q,7,s) es una cuddrupla mala si y solamente si Ay, + Ajg =
Air + Ays para todo @ y t, + 1ty =t + L.

Demostracidon. Supongamos que las condiciones (4) y (5) se cumplen (el re-
greso es inmediato de la definicién de los a;). Supongamos entonces que

ap + ag = ar + as.

Como
K

P
2 . 2 .
2Kp+3Kp+2 > E Aip2(z—1) +3i
i=1
y andlogamente para q,r,s, la contribucién de t,,%,,t,,ts es independiente de
los digitos restantes de a,, aq, a,, as respectivamente, entonces

tp +tg=tr + 1,

De (5) se sigue que existen K y L talesque K, =K, =Ky K, =K, =1L
con K > L. Ain tenemos que decir algo sobre

K L K L
ZAW2(F1)2+3¢ + ZAMQ(FUZJFM _ ZAirQ(Fl)LFSi + ZAiSQ(Fl)?Jrgi
i=1 i=1 i=1 i=1

pero como

i
i +3(i+1) ZAipg(j—l)QHj
j=1
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120 JUAN PABLO MALDONADO LOPEZ
y analogamente para ¢, r, s, vemos que para ¢ < L,
‘ 2 ‘ 2
S (A Agg20 U = Y (A 4 A2

Jj=1 Jj=1

y como los términos entre paréntesis no afectan a la otra parte de la suma ya
que su suma total es < 2291 — 2 por (3) tenemos que

Aip + Aiq = Air + Ais~
Como para i > L se tiene que A;q, Ajs = 0 se sigue la afirmacién. o

En la demostracion del lema anterior, probamos un resultado 1til en térmi-
nos de los ¢,,’s. Esto nos ayudard a contar el nimero de cuddruplas malas. Para

el lema siguiente, recordemos que m,, = PK ’ a¢pJ.

Lema 5. Tenemos que

My + Mg = My + M.

Demostracion. La primera afirmacion se sigue del lema anterior. La segunda
afirmacién es inmediata por la identidad correspondiente a los bloques que
también se probd en el lema anterior.

Buscamos condiciones necesarias sobre las cuddruplas malas (p, ¢, 7, s). Para
el siguiente lema, utilizamos el hecho que ¢, + ¢q = Ppq-

Lema 6. Si (p,q,r,s) es una cuddrupla mala, con K y L como antes, entonces

|y — gl < 4-277, (6)
(K —1)2+(L—1)*> B(L* - 5), (7)
(K -1+ (L—-1)?2>B(L-1)>~% (8)

Demostracién. Sean py, py, pr, ps los primos gaussianos con normas /p, \/q,

27ri¢j — Pji

/1, 4/s respectivamente. Como e L tenemos
Pj

Pp PsPrPq — Pr PqaPpPs
PpPqPrPs

PpPr _ PsPq
PpPr  PsPq

1
>

v
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UNA NOTA SOBRE CONJUNTOS DE SIDON INFINITOS 121

Por otro lado,

PpPq _ PrPs

— ‘ezﬁi(¢p+¢q) _ eQWi(¢T+¢s)
PpPq  PrPs

— ‘1 _ e2ﬂi(¢p+¢q_¢r_¢s)

< 27T|¢p+¢q — & _¢s|
< 8|¢p+¢q *Qbr 7¢s|-

De la definicién de los m; y la desigualdad del tridngulo se tiene
2
o|bpr—dag| < |adp—my|+|adg—mg|+|agr—m.|+|ag,—m,| < 4-275. (9)
Como « > 1, combinando las desigualdades anteriores obtenemos

<32.27L

1
\/Pqrs

lo que implica

(K—1)24(@-1)2
2L* =5 < /pqrs < 2 5
La tercera desigualdad buscada se sigue de esta para L suficientemente

grande.

Para p,ps dados, contaremos los pares (p, r) tales que (6) se cumpla. A cada
z € Z[i] con z = a+1iby a,b € Z le asociamos el punto de coordenadas enteras
(a,b) € R2. Decimos entonces que (a,b) es un punto de coordenadas enteras.

Lema 7. Sea zy € R%. Sea C el circulo con centro zy y radio R. El nimero n
de puntos de coordenadas enteras en un sector circular de C de dngulo 0 que
corresponden a los elementos de Z[i] {w1,wa, ..., w,} tal que parai=1,...,n,
Wi = pp, Pr; Para algunos p;,ri € Pi es menor que OR? + 1.

Demostracion. Consideramos el segmento que une zy y un punto w;. Obser-
vemos que este segmento no contiene un tercer punto w;; de ser asi, tendriamos
que el argumento de w; es igual al argumento de w; y por tanto

¢Pi - ¢Ti = (bpj - d)rj.

Pero {¢p,, ¢r,} # {Pp,;» br,;}, esto debido a nuestra observacion previa de que
el conjunto de argumentos de los primos gaussianos es un conjunto de Sidon.
Entonces es posible enumerar los puntos en sentido trigonométrico. Ahora con-
sideramos los tridngulos con vértices zg, w; y w;41 parai =1,...,n—1. Este es
un conjunto de tridngulos ajenos y el area total cubierta por ellos es menor que
el area del sector circular, que estd dada por gRQ. Como todos los tridngulos
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122 JUAN PABLO MALDONADO LOPEZ

tienen puntos de coordenadas enteras como vértices, tenemos que el drea de
cada tridngulo es al menos % y como tenemos n — 1 tridngulos obtenemos

n—1 0
< —
2 T2

R2
de donde se sigue la desigualdad buscada para n. o]

Consideremos el conjunto

AKL = {p7T€PKa anGPLa p7£7n7 q#SZ(p,q,T,S) esmala}

y sea |Akr| := Akr. En el lema siguiente obtendremos una estimacién para el
numero de cuddruplas malas.

Lema 8. FEl nimero de cuddruplas malas es

App < 2%((K71)2+(L71)2)7L2.

Demostracion. Para q,s dados, basta contar el nimero de pares (p,r) con

p,r como arriba tal que se tenga la desigualdad del lema anterior. Como
2(K—1)2

pr <2~ F  tenemos que la norma de los puntos de coordenadas enteras que
. (K-1)2 (K—1)2 2
nos interesan es menor que 2° 7 . Hacemos R=2" 7 y#=4-2"" y con-
sideramos valores de z correspondientes a enteros gaussianos de la forma p,.p,
con p,r € Pg. Tenemos, por el lema anterior, que para ¢, s dados, el niimero de
12 2 _1)\2_ 712
L2442 | | o 9B (K-1)°—17+2

: to 92 (K—1)2
pares (p,r) que nos interesan es a lo mas 25
pues

(K —1)* 4+ (L —1)* > B(L* - 5)
(K -1)*> (B-1)L* -58

%(K —1)% > %(5 ~1)L* - 10
> L7 - 10

por la eleccién de 3, para L suficientemente grande. Como tenemos 95 (L-1)°
posibilidades para los pares (g, s) se sigue que

AKL < 2%((K_1)2+(L_1)2)_L2

lo que concluye la prueba. o
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UNA NOTA SOBRE CONJUNTOS DE SIDON INFINITOS 123
4. El argumento probabilistico

Hasta este momento, el parametro o no ha sido relevante para los lemas que
hemos probado. La cota que obtuvimos para el nimero de cuddruplas malas no
es muy buena para valores pequenos de L. Utilizaremos el pardmetro a para
solucionar este problema.

Lema 9. Sea (p,q,r,s) una cuddrupla mala. Entonces

mp =m, méd gK*—L* (10)

Demostracion. Sabemos que A, + Ay = Ay + Ajs. Para L < i < K se
tiene que A;q = Ay = 0, por tanto, Ay, = Ao Recordando la construccion
de los bloques A, v Ay, de los digitos de my, y m, se tiene que los digitos
correspondientes en la expansién binaria de estos dos nimeros coinciden a
partir de la posicién L 4+ 1 (de derecha a izquierda). o

Sea p la medida de Lebesgue sobre R. Veremos cémo evadir las cuadruplas
malas con una elecciéon apropiada de a.

Lema 10. Supongamos que K > L. Sean p,r € Py tales que existe al menos
un par q,s € P y un a que satisfacen (4). Entonces

p{a € [1,2) : (10) se cumple} < oL*—K*,

Demostracion. Recordemos que [z] —[y] = [x —y]+0 é —1. Tenemos entonces
que

PK"@(@, - ¢,»)J =0,1 mod 26" ~L°,

Ponemos M :=25°~L" y N := [2K7(¢, — ¢,)|. La congruencia anterior se

traduce en alN = M@ + x, donde @ es un entero y € (—1,1). Fijando @,
los a que se pueden escribir de esta manera estdn entonces contenidos en un
intervalo de tamano % Por otra parte, @ < % + 1 pues a < 2. Entonces

2 N
1,2): (1 e 2 (14 2.
uwf{a €[1,2) (O)secumpe}<<N< +M>

Basta probar que N > M. Por (9) se tiene que

6p — 60| = |bs — &4 +0(2*L2).
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124 JUAN PABLO MALDONADO LOPEZ

Se sigue de ¢?,s% < 2(L-1)? y la desigualdad |e* — 1| < 2|z|, para |z| < 1,
que

1

m
1
= or
1

2w

@
PsPq
1 Lals
PqPs
PaPs — PsPq
PqPs

log

’¢q_¢s|

2

_r?
> 2775 .

Tenemos entonces que
y por tanto

Luego, %(1 + %) < LN - ﬁ, lo que concluye la prueba. o]

Esta nueva cota es buena en el sentido que no demasiados a’s contribuyen
a completar cuddruplas malas para un par p,r dado cuando L es pequeno.
Por otro lado, nuestra cota anterior para el niimero de cuadruplas malas no es
buena cuando L es pequeno, pero es muy buena cuando L estd cerca de K.
Este hecho nos sugiere que debemos combinar ambas cotas de alguna manera
para que en promedio se compensen. Sea

TKL(OZ):#{p,q,T,SZp,TEPK7 T,S,EPL, p#ra Q#S, ap+a/q:a’r+as}~

Lema 11. Para L < K tenemos
2
1

Demostracion. Escribimos m = p{a € [1,2) : (4) se cumple}. Como m = 0
cuando (6) no se cumple y < 2L* =K% on otro caso, sumando sobre los posibles
valores de p, q,r, s se obtiene

2
/ TKL(a) da < 2L27K2AKL
1

de donde se sigue la desigualdad buscada sustituyendo la cota para Agxp. O

Definimos Tk (e) := #{p,q,7,s : p,7 € Pk, (4) y (5) se cumplen}. De la
definicién es inmediato que Tk (o) =3, 5 ;e T ().
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UNA NOTA SOBRE CONJUNTOS DE SIDON INFINITOS 125

Lema 12. Se tiene la estimacion siguiente
2 1l(K-1)>—2K
/ Tk (o) do < 27 .
1

Demostracién. Como Tk () # 0 es posible solamente si (K—1)2+(L—1)? >

ﬁ(L - 1)27

/lzTK(a) da = Z /12TKL(a)da

L<K
2
:Z/ TKL(a)da
Lec’!
BTy g e
LeL
< 2¢
donde
2(K —1)2 2(K —1)?
o AK-1DP L, 2AK-1)
B B(B—1)
2
= (K-1)?-K?
:LKQ_LK_A'_L

p—-1 p—-1 B-1

De esto se obtiene que el coeficiente principal de la expresién anterior es

2 1= 1
p—1 B
por la eleccion de 3. Ademas, el coeficiente lineal es —ﬁ =—-2— % < —2. Se

tiene entonces que

C < %(K71)272K,

lo que concluye la prueba. o

Teorema 13. (Ruzsa, 1998) Existe un conjunto de Sidon infinito S tal que la
funcion de conteo S(x) satisface

para B =2+ 1.
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Demostracion. De la estimacién anterior, obtenemos que

2
22_(%(K—1)2_K)/ TK(O&) dO[ < 2271{
K 1 K

de donde se sigue

2
/ ZTK(Q)Q_(%(K_DZ_K) do < +o00.
Ik

Sea f(a) =), TK(a)Qfé(Kfl)sz. Como ff f(a)da < +o0, para casi to-

do a, f(«) es finito, i.e. Tk (o) < 95 (K-1)*-K para K suficientemente grande,
(dependiendo de a). Tomamos uno de estos «. Sea 71 (z) la cantidad de nime-
ros primos menores que x que son congruentes a 1 médulo 4. La cardinalidad
de Pk esta dada por el teorema de Dirichlet:

(K —1)2 (K —2)2
Pe|=m (275 ) -m (277

(K —1)2
B

) " 2(K —1)2Blog2’

Entonces, para K suficientemente grande, Tk (a) < @. Esto significa que
si omitimos el elemento més grande de las cuddruplas malas, lo que nos queda
tiene cardinalidad mayor que @. Si denotamos con Qk el conjunto de los
elementos restantes y tomamos S como la unién de los conjuntos Q)i entonces
S es un conjunto de Sidon.

Sea S(z) la funcién de conteo de S. Como a, < (K1) +3(K-1)+2 o 9(K+1)*

para K = b / llzig - QJ el conjunto Qx consiste de enteros menores que z, de

donde se sigue que S(x) > 71'1(2%“(71)2) = 25+ Como también tenemos

a, > 2(K71)2+3(K71)+1 > 2K2’

tomando K = b / }Zi 5 — IJ, el conjunto Qg tiene elementos mayores que x

1K2

y entonces S(z) < m (23 ) = 257 De estas estimaciones se sigue el

teorema. of
Nuestra construccién estd completamente basada en las ideas de Ruzsa. Las

simplificaciones técnicas que aporta la simplificacién sugerida por Cilleruelo y
Ruzsa nos permite apreciar mejor su trabajo.
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