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Resumen. Un conjunto de Sidon es un subconjunto de los enteros con la pro-
piedad que la suma de cada dos elementos es distinta. En 1998, I. Ruzsa dio
una construcción probabiĺıstica de un conjunto de Sidon infinito cuya función

de conteo es x
√
2−1+o(1). En este trabajo mostramos una simplificación de

dicha construcción.
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Abstract. A Sidon set is a subset of the integers with the property that the
sums of every two elements are distinct. In 1998, I. Ruzsa gave a probabilis-
tic construction of an infinite Sidon set whose counting function is given by

x
√
2−1+o(1). In this work we simplify such a construction.
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1. Introducción

Un conjunto de enteros positivos S se llama conjunto de Sidon si las sumas de
cualesquiera dos elementos de S son distintas. Por ejemplo, el conjunto de las
potencias de 2 es un conjunto de Sidon infinito. Estos conjuntos aparecieron
en los años 30 en el contexto del análisis armónico gracias al trabajo de Simon
Sidon en [4], quién llamó la atención de Paul Erdös sobre estos conjuntos y desde
entonces han sido de particular interés en teoŕıa de números y combinatoria.
Una buena referencia sobre los resultados y las distintas generalizaciones es [2].

Un problema interesante es determinar la cardinalidad del mayor conjunto
de Sidon contenido en el intervalo [1, x]. Para un conjunto S de enteros posi-
tivos, definimos la función de conteo del conjunto S como S(x) = #S ∩ [1, x].
No es dif́ıcil observar que si S es un conjunto de Sidon, S(x)�

√
x.

113



114 JUAN PABLO MALDONADO LÓPEZ

Utilizando el algoritmo avaro (greedy algorithm) podemos construir un con-

junto de Sidon con función de conteo� x
1
3 . Este resultado se puede mejorar. En

[3] I. Ruzsa construyó un conjunto de Sidon con función de conteo x
√

2−1+o(1) .
Su construcción se basa en el hecho de que los números primos son un conjunto
de Sidon multiplicativo para los enteros; el conjunto de sus logaritmos es un
conjunto de Sidon aditivo de números reales y un redondeo apropiado de ellos
da un conjunto de Sidon de enteros.

En este trabajo, siguiendo las ideas de la construcción de Ruzsa (y la sim-
plificación sugerida en [1]), construiremos un conjunto de Sidon con la misma
función de conteo. Consideramos los argumentos de los primos gaussianos (los
primos en Z[i]) no reales. Esta sucesión es acotada, lo que simplifica la de-
mostración. Algunas cotas técnicas que aparecen en el art́ıculo de Ruzsa se
demuestran de manera geométrica. Hemos conservado la notación de Ruzsa
para facilitar la comparación con el argumento original. En la sección siguiente
discutimos la construcción de un conjunto de Sidon para el caso finito, a fin
de motivar la construcción para el caso infinito y en las dos secciones restantes
explicamos la construcción del conjunto de Sidon infinito. Esta construcción es
probabiĺıstica.

El problema de encontrar un subconjunto infinito grande de Z tal que las
sumas de cada tres elementos sean distintas (donde por grande entendemos que
tiene una función de conteo mayor que la que se obtiene con el algoritmo avaro)
permanece abierto.

2. Conjuntos de Sidon finitos

En esta sección mostraremos como obtener conjuntos de Sidon finitos. El primer
intento natural, como se mencionó en la introducción, es considerar el algoritmo
avaro. Definimos a1 = 1 y para k > 1 tomamos ak de manera que ak /∈ {ai +
aj−al : 1 ≤ i, j, l ≤ k−1}. Inmediatamente observamos que ak ≤ (k−1)3+1 ya
que tenemos a lo más (k−1)3 elecciones prohibidas para {i, j, l} y entonces con

esta construcción obtenemos un conjunto de Sidon de tamaño ∼ n 1
3 contenido

en el conjunto {1, 2, . . . , n}. La construcción de un conjunto de Sidon finito
mediante el algoritmo avaro se extiende al caso infinito.

El teorema fundamental de la aritmética nos ayuda a mejorar el exponente
de n.

Seguimos la notación usual y escribimos byc para el mayor entero menor o
igual que y y {y} = y − byc.

Teorema 1. El conjunto

X :=

{
xp ∈ N : xp =

⌊
2n

log n
log p

⌋
, p ≤

√
n

2 log n
, p primo

}
es un conjunto de Sidon con ∼

√
2n

log3/2 n
elementos para n suficientemente grande.
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UNA NOTA SOBRE CONJUNTOS DE SIDON INFINITOS 115

Demostración. Veamos primero que este conjunto es un conjunto de Sidon.
Para ver esto, supongamos que se tienen p, q, r, s con {p, q} 6= {r, s} tales que

xp + xq = xr + xs.

sin pérdida de generalidad, pq > rs. Como xp + xq − xr − xs = 0,

2n(log p+ log q − log r − log s)

log n
={

2n log p

log n

}
+

{
2n log q

log n

}
−
{

2n log r

log n

}
−
{

2n log s

log n

}
.

Utilizando el hecho de que, para números reales x, y, z, w se tiene la de-
sigualdad ∣∣{x}+ {y} − {z} − {w}

∣∣ ≤ 2 (1)

obtenemos
2n

log n
log

pq

rs
≤ 2

de donde
log n

n
≥ log

pq

rs
.

Por otro lado

log
pq

rs
= log

(
1 +

pq − rs
rs

)
≥ log

(
1 +

1

rs

)
≥ 1

2rs

>
log n

n
,

lo cual es una contradicción (la primera desigualdad se sigue de que pq > rs,
la segunda desigualdad se sigue de la desigualdad log(1 + x) ≥ x

2 para x < 2 y
la tercera desigualdad se sigue de la definición de r y s).

La segunda afirmación es consecuencia del teorema de los números primos.
�X

El redondeo de los logaritmos de los primos depende de n. Aśı que no es
posible utilizar este argumento para construir un conjunto de Sidon infinito.
Ruzsa se inspiró en esta construcción y eliminó la dependencia de n. Introdu-
cimos otra construcción de un conjunto de Sidon finito para motivar nuestra
variante de la construcción de Ruzsa.
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116 JUAN PABLO MALDONADO LÓPEZ

Sea P el conjunto de los números primos congruentes a 1 módulo 4. Para
p ∈ P, escribimos p = a2 + b2 = (a+ bi)(a− bi). La descomposición de p como
suma de dos cuadrados es única y por tanto su factorización en Z[i] también
lo es salvo unidades (±1,±i). Sea ρp = a + bi tal que p = ρpρp, con ρp tal
que Re ρp > Im ρp > 0, donde Re z, Im z denotan las partes real e imaginaria

respectivamente del número complejo z. Escribamos
ρp
ρp

= e2πiφp con φp un

número en [0, 1). Denotamos con |z| el valor absoluto del número complejo
z. La sucesión (φp)p∈P es un conjunto de Sidon módulo 2π, pues si tenemos
φp + φq = φr + φs, esto implicaŕıa que ρp ρqρrρs = ρpρqρr ρs lo cual es
imposible si {p, q} 6= {r, s}. Se tiene el siguiente teorema.

Teorema 2. El conjunto

C :=

{
cp ∈ N : cp = bnφpc, p ∈ P, p ≤

√
n

4

}
,

es un conjunto de Sidon contenido en {1, 2, . . . , n} con
√
n

4 logn elementos.

Demostración. Supongamos que tenemos cuatro elementos en nuestro con-
junto tales que

cp + cq = cr + cs

con {p, q} 6= {r, s} y pq > rs. Consideramos

n(φp + φq − φr − φs) = {nφp}+ {nφq} − {nφr} − {nφs}. (2)

Observemos que

∣∣∣∣ρp ρqρpρq
− ρr ρs
ρrρs

∣∣∣∣ =

∣∣∣∣1− ρpρqρr ρs
ρp ρqρrρs

∣∣∣∣
=

∣∣∣∣1− e2πi(φp+φq−φr−φs)
∣∣∣∣

≤ 2π
∣∣φp + φq − φr − φs

∣∣
≤ 4π

n

donde la primera desigualdad es inmediata de la interpretación geométrica1 y
la segunda desigualdad se sigue de (1) y (2). Por otra parte,

1La longitud de la cuerda que une a 1 y eiθ es menor o igual que θ, la longitud del arco
que subtiende.
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UNA NOTA SOBRE CONJUNTOS DE SIDON INFINITOS 117

∣∣∣∣ρp ρqρpρq
− ρr ρs
ρrρs

∣∣∣∣ =

∣∣∣∣ρp ρqρrρs − ρr ρsρpρqρpρqρrρs

∣∣∣∣
≥ 1
√
pqrs

≥ 16

n
.

De las desigualdades anteriores se tiene

16

n
≤ 4π

n

que es una contradicción. El teorema de los números primos nos da la cardina-
lidad de C. �X

3. La construcción

Sea α ∈ [1, 2) y consideramos el conjunto

{αφp ∈ R : p ∈ P}.

Sea β > 1 el número real que satisface

2

β − 1
− 1 =

1

β
.

Sea Kp > 2 entero tal que

2(Kp−2)2 < pβ < 2(Kp−1)2 .

Consideramos el conjunto

PK = {p ∈ P : Kp = K}.

Para p ∈ PK sea

mp :=
⌊
2K

2

αφp
⌋

=

K2∑
i=1

δip2
K2−i

con δip ∈ {0, 1}. Estos números, cuando p vaŕıa sobre P, son el ingrediente prin-
cipal para nuestro conjunto de Sidon. Cortamos este número en ∆1p,∆2p, . . . ,
∆Kp bloques de manera que

∆ip =

i2∑
j=(i−1)2+1

δjp2
i2−j
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118 JUAN PABLO MALDONADO LÓPEZ

y por tanto tenemos

∆ip ≤
i2∑

j=(i−1)2+1

2i
2−j = 22i − 1. (3)

Reacomodemos estos bloques. De manera informal, ponemos los bloques 1
a K, donde el primer bloque corresponde al primer d́ıgito; el segundo bloque, a
los siguientes cuatro d́ıgitos; el tercer bloque, a los siguientes nueve y aśı suce-
sivamente hasta los últimos K2 d́ıgitos (de derecha a izquierda) y dejamos tres
espacios entre bloques consecutivos. Ponemos un 1 en el segundo espacio de
derecha a izquierda del K-ésimo bloque. Este 1 es el d́ıgito principal de nues-
tro nuevo número y nos da información precisa sobre su tamaño. Por ejemplo,
supongamos que obtuvimos el número 0.10101010111010 al redondear alguno
de los αφp. Al cortarlo se obtienen los bloques

∆1 = 1,∆2 = 0101,∆3 = 010111010

y después de agregar los tres ceros y el 1 nos queda

1001011101000001010001

donde los números en negritas corresponden a los d́ıgitos que insertamos entre

bloques consecutivos. Formalmente, si escribimos tp := 2K
2
p+3Kp+2, tenemos el

número

ap :=

Kp∑
i=1

∆ip2
(i−1)2+3i + tp.

Sea Aα := ∪p∈P{ap}. Por la elección de K, como 2K
2
p+3Kp+2 < ap <

2K
2
p+3Kp+3 observamos que ap = pβ+o(1). Veamos cuál es la razón de introducir

los bloques de ceros. Consideramos la identidad en números binarios

1000011 + 100010 = 111011 + 101010

donde los cuatro números tienen en la misma posición al d́ıgito 0 que escribimos
como en negritas. Al sumar estos números, observemos que el 0 previene de
‘llevar’ unos a los otros bloques, de manera que en cierto sentido los bloques
1000, 100, 111, 101 correspondientes a los últimos cuatro d́ıgitos de cada número
(de derecha a izquierda) contribuyen a la suma en cada lado de la ecuación
de manera independiente que los números que están al otro lado del 0. De
acuerdo con este argumento, debeŕıamos tener que 1000 + 100 = 111 + 101 y
11 + 10 = 11 + 10 lo cual es cierto. El hecho de que la suma sea independiente
por bloques nos ayuda a contar el número de veces que la ecuación x+y = z+w
tiene soluciones en Aα.
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UNA NOTA SOBRE CONJUNTOS DE SIDON INFINITOS 119

Definición 3. Consideramos el conjunto Aα, para una elección fija de α. Sean
ap, aq, ar, as ∈ Aα con p, q, r, s ∈ P tales que

ap + aq = ar + as (4)

con
ap > ar ≥ as > aq. (5)

Decimos que la cuádrupla (p, q, r, s) ∈ P4 es una cuádrupla mala.

La desigualdad (5) es una consecuencia de (4) si asumimos que ap es
máx{ap, aq, ar, as}.

Si tenemos una cuádrupla mala podemos remover el ai correspondiente
al mayor elemento de esta cuádrupla. Haciendo esto para todas las cuádruplas
malas, los restantes elementos de Aα forman un conjunto de Sidon. Nos interesa
estimar entonces el número de cuádruplas malas.

La manera en que se construyen los elementos de Aα ayuda a contar el
número de cuádruplas malas.

Lema 4. (p, q, r, s) es una cuádrupla mala si y solamente si ∆ip + ∆iq =
∆ir + ∆is para todo i y tp + tq = tr + ts.

Demostración. Supongamos que las condiciones (4) y (5) se cumplen (el re-
greso es inmediato de la definición de los ai). Supongamos entonces que

ap + aq = ar + as.

Como

2K
2
p+3Kp+2 >

Kp∑
i=1

∆ip2
(i−1)2+3i

y análogamente para q, r, s, la contribución de tp, tq, tr, ts es independiente de
los d́ıgitos restantes de ap, aq, ar, as respectivamente, entonces

tp + tq = tr + ts.

De (5) se sigue que existen K y L tales que Kp = Kr = K y Kq = Ks = L
con K ≥ L. Aún tenemos que decir algo sobre

K∑
i=1

∆ip2
(i−1)2+3i +

L∑
i=1

∆iq2
(i−1)2+3i =

K∑
i=1

∆ir2
(i−1)2+3i +

L∑
i=1

∆is2
(i−1)2+3i

pero como

2i
2+3(i+1) >

i∑
j=1

∆ip2
(j−1)2+3j
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120 JUAN PABLO MALDONADO LÓPEZ

y análogamente para q, r, s, vemos que para i < L,

i∑
j=1

(∆jp + ∆jq)2
(j−1)2+3j =

i∑
j=1

(∆jr + ∆js)2
(j−1)2+3j

y como los términos entre paréntesis no afectan a la otra parte de la suma ya
que su suma total es ≤ 22j+1 − 2, por (3) tenemos que

∆ip + ∆iq = ∆ir + ∆is.

Como para i > L se tiene que ∆iq,∆is = 0 se sigue la afirmación. �X

En la demostración del lema anterior, probamos un resultado útil en térmi-
nos de los tp’s. Esto nos ayudará a contar el número de cuádruplas malas. Para

el lema siguiente, recordemos que mp =
⌊
2K

2

αφp

⌋
.

Lema 5. Tenemos que

mp +mq = mr +ms.

Demostración. La primera afirmación se sigue del lema anterior. La segunda
afirmación es inmediata por la identidad correspondiente a los bloques que
también se probó en el lema anterior. �X

Buscamos condiciones necesarias sobre las cuádruplas malas (p, q, r, s). Para
el siguiente lema, utilizamos el hecho que φp + φq = φpq.

Lema 6. Si (p, q, r, s) es una cuádrupla mala, con K y L como antes, entonces

|φpr − φsq| < 4 · 2−L
2

, (6)

(K − 1)2 + (L− 1)2 > β(L2 − 5), (7)

(K − 1)2 + (L− 1)2 > β(L− 1)2. (8)

Demostración. Sean ρp, ρq, ρr, ρs los primos gaussianos con normas
√
p,
√
q,

√
r,
√
s respectivamente. Como e2πiφj =

ρj
ρj

, tenemos∣∣∣∣ρpρrρpρr
− ρsρq
ρsρq

∣∣∣∣ =

∣∣∣∣ρp ρsρrρq − ρr ρqρpρsρpρqρrρs

∣∣∣∣
≥ 1
√
pqrs

.
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UNA NOTA SOBRE CONJUNTOS DE SIDON INFINITOS 121

Por otro lado,∣∣∣∣ρpρqρpρq
− ρrρs
ρrρs

∣∣∣∣ =
∣∣e2πi(φp+φq) − e2πi(φr+φs)

∣∣
=
∣∣1− e2πi(φp+φq−φr−φs)

∣∣
≤ 2π

∣∣φp + φq − φr − φs
∣∣

< 8
∣∣φp + φq − φr − φs

∣∣.
De la definición de los mi y la desigualdad del triángulo se tiene

α
∣∣φpr−φsq∣∣ < ∣∣αφp−mp

∣∣+∣∣αφq−mq

∣∣+∣∣αφr−mr

∣∣+∣∣αφs−ms

∣∣ < 4·2−L
2

. (9)

Como α ≥ 1, combinando las desigualdades anteriores obtenemos

1
√
pqrs

< 32 · 2−L
2

lo que implica

2L
2−5 <

√
pqrs < 2

(K−1)2+(L−1)2

β .

La tercera desigualdad buscada se sigue de esta para L suficientemente
grande. �X

Para ρqρs dados, contaremos los pares (p, r) tales que (6) se cumpla. A cada
z ∈ Z[i] con z = a+ ib y a, b ∈ Z le asociamos el punto de coordenadas enteras
(a, b) ∈ R2. Decimos entonces que (a, b) es un punto de coordenadas enteras.

Lema 7. Sea z0 ∈ R2. Sea C el ćırculo con centro z0 y radio R. El número n
de puntos de coordenadas enteras en un sector circular de C de ángulo θ que
corresponden a los elementos de Z[i] {w1, w2, . . . , wn} tal que para i = 1, . . . , n,
wi = ρpiρri para algunos pi, ri ∈ PK es menor que θR2 + 1.

Demostración. Consideramos el segmento que une z0 y un punto wi. Obser-
vemos que este segmento no contiene un tercer punto wj ; de ser aśı, tendŕıamos
que el argumento de wi es igual al argumento de wj y por tanto

φpi − φri = φpj − φrj .

Pero {φpi , φri} 6= {φpj , φrj}, esto debido a nuestra observación previa de que
el conjunto de argumentos de los primos gaussianos es un conjunto de Sidon.
Entonces es posible enumerar los puntos en sentido trigonométrico. Ahora con-
sideramos los triángulos con vértices z0, wi y wi+1 para i = 1, . . . , n−1. Este es
un conjunto de triángulos ajenos y el área total cubierta por ellos es menor que
el área del sector circular, que está dada por θ

2R
2. Como todos los triángulos
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122 JUAN PABLO MALDONADO LÓPEZ

tienen puntos de coordenadas enteras como vértices, tenemos que el área de
cada triángulo es al menos 1

2 y como tenemos n− 1 triángulos obtenemos

n− 1

2
≤ θ

2
R2,

de donde se sigue la desigualdad buscada para n. �X

Consideremos el conjunto

AKL :=
{
p, r ∈ PK , q, s ∈ PL, p 6= r, q 6= s : (p, q, r, s) es mala}

y sea |AKL| := AKL. En el lema siguiente obtendremos una estimación para el
número de cuádruplas malas.

Lema 8. El número de cuádruplas malas es

AKL � 2
2
β ((K−1)2+(L−1)2)−L2

.

Demostración. Para q, s dados, basta contar el número de pares (p, r) con
p, r como arriba tal que se tenga la desigualdad del lema anterior. Como

pr < 2
2(K−1)2

β tenemos que la norma de los puntos de coordenadas enteras que

nos interesan es menor que 2
(K−1)2

β . Hacemos R = 2
(K−1)2

β y θ = 4 ·2−L2

y con-
sideramos valores de z0 correspondientes a enteros gaussianos de la forma ρrρp
con p, r ∈ PK . Tenemos, por el lema anterior, que para q, s dados, el número de

pares (p, r) que nos interesan es a lo más 2
2
β (K−1)2−L2+2 + 1� 2

2
β (K−1)2−L2+2

pues

(K − 1)2 + (L− 1)2 > β(L2 − 5)

(K − 1)2 > (β − 1)L2 − 5β

2

β
(K − 1)2 >

2

β
(β − 1)L2 − 10

� L2 − 10

por la elección de β, para L suficientemente grande. Como tenemos 2
2
β (L−1)2

posibilidades para los pares (q, s) se sigue que

AKL � 2
2
β ((K−1)2+(L−1)2)−L2

lo que concluye la prueba. �X
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UNA NOTA SOBRE CONJUNTOS DE SIDON INFINITOS 123

4. El argumento probabiĺıstico

Hasta este momento, el parámetro α no ha sido relevante para los lemas que
hemos probado. La cota que obtuvimos para el número de cuádruplas malas no
es muy buena para valores pequeños de L. Utilizaremos el parámetro α para
solucionar este problema.

Lema 9. Sea (p, q, r, s) una cuádrupla mala. Entonces

mp ≡ mr mód 2K
2−L2

. (10)

Demostración. Sabemos que ∆ip + ∆iq = ∆ir + ∆is. Para L < i < K se
tiene que ∆iq = ∆is = 0, por tanto, ∆ip = ∆ir. Recordando la construcción
de los bloques ∆ip y ∆ir, de los d́ıgitos de mp y mr se tiene que los d́ıgitos
correspondientes en la expansión binaria de estos dos números coinciden a
partir de la posición L+ 1 (de derecha a izquierda). �X

Sea µ la medida de Lebesgue sobre R. Veremos cómo evadir las cuádruplas
malas con una elección apropiada de α.

Lema 10. Supongamos que K > L. Sean p, r ∈ PK tales que existe al menos
un par q, s ∈ PL y un α que satisfacen (4). Entonces

µ{α ∈ [1, 2) : (10) se cumple} � 2L
2−K2

.

Demostración. Recordemos que [x]−[y] = [x−y]+0 ó −1. Tenemos entonces
que ⌊

2K
2

α(φp − φr)
⌋
≡ 0, 1 mód 2K

2−L2

.

Ponemos M := 2K
2−L2

y N :=
⌊
2K

2

(φp − φr)
⌋
. La congruencia anterior se

traduce en αN = MQ + x, donde Q es un entero y x ∈ (−1, 1). Fijando Q,
los α que se pueden escribir de esta manera están entonces contenidos en un
intervalo de tamaño 2

N . Por otra parte, Q < 2N
M + 1 pues α < 2. Entonces

µ{α ∈ [1, 2) : (10) se cumple} � 2

N

(
1 +

N

M

)
.

Basta probar que N �M . Por (9) se tiene que

∣∣φp − φr∣∣ =
∣∣φs − φq∣∣+O

(
2−L

2
)
.

Revista Colombiana de Matemáticas
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Se sigue de qβ , sβ < 2(L−1)2 y la desigualdad |ez − 1| ≤ 2|z|, para |z| ≤ 1,
que

∣∣φq − φs∣∣ =
1

π

∣∣∣∣ log
ρqρs
ρsρq

∣∣∣∣
≥ 1

2π

∣∣∣∣1− ρqρs
ρqρs

∣∣∣∣
=

1

2π

∣∣∣∣ρqρs − ρsρqρqρs

∣∣∣∣
� 2−

L2

β .

Tenemos entonces que

N � 2K
2−L2

β

y por tanto

N � 2K
2− 1

βL
2

> M.

Luego, 2
B

(
1 + N

M

)
� 1

N
N
M = 1

M , lo que concluye la prueba. �X

Esta nueva cota es buena en el sentido que no demasiados α’s contribuyen
a completar cuádruplas malas para un par p, r dado cuando L es pequeño.
Por otro lado, nuestra cota anterior para el número de cuádruplas malas no es
buena cuando L es pequeño, pero es muy buena cuando L está cerca de K.
Este hecho nos sugiere que debemos combinar ambas cotas de alguna manera
para que en promedio se compensen. Sea

TKL(α) = #{p, q, r, s : p, r ∈ PK , r, s,∈ PL, p 6= r, q 6= s, ap + aq = ar + as}.

Lema 11. Para L ≤ K tenemos∫ 2

1

TKL(α) dα� 2
2
β ((K−1)2+(L−1)2)−K2

.

Demostración. Escribimos m = µ{α ∈ [1, 2) : (4) se cumple}. Como m = 0

cuando (6) no se cumple y � 2L
2−K2

en otro caso, sumando sobre los posibles
valores de p, q, r, s se obtiene∫ 2

1

TKL(α) dα� 2L
2−K2

AKL

de donde se sigue la desigualdad buscada sustituyendo la cota para AKL. �X

Definimos TK(α) := #{p, q, r, s : p, r ∈ PK , (4) y (5) se cumplen}. De la
definición es inmediato que TK(α) =

∑
L≥K TKL(α).
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Lema 12. Se tiene la estimación siguiente∫ 2

1

TK(α) dα� 2
1
β (K−1)2−2K .

Demostración. Como TKL(α) 6= 0 es posible solamente si (K−1)2+(L−1)2 >
β(L− 1)2, ∫ 2

1

TK(α) dα =
∑
L≤K

∫ 2

1

TKL(α) dα

=
∑
L∈L

∫ 2

1

TKL(α) dα

� 2
2
β (K−1)2−K2 ∑

L∈L
2

2(L−1)2

β

� 2C

donde

C =
2(K − 1)2

β
−K2 +

2(K − 1)2

β(β − 1)

=
2

β − 1
(K − 1)2 −K2

=
2

β − 1
K2 − 4

β − 1
K +

2

β − 1
.

De esto se obtiene que el coeficiente principal de la expresión anterior es

2

β − 1
− 1 =

1

β

por la elección de β. Además, el coeficiente lineal es − 4
β−1 = −2− 2

β < −2. Se
tiene entonces que

C <
1

β
(K − 1)2 − 2K,

lo que concluye la prueba. �X

Teorema 13. (Ruzsa, 1998) Existe un conjunto de Sidon infinito S tal que la
función de conteo S(x) satisface

S(x) = x
1
β+o(1)

para β =
√

2 + 1.
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Demostración. De la estimación anterior, obtenemos que

∑
K

2−( 1
β (K−1)2−K)

∫ 2

1

TK(α) dα�
∑
K

2−K

de donde se sigue ∫ 2

1

∑
K

TK(α)2−( 1
β (K−1)2−K) dα < +∞.

Sea f(α) =
∑
K TK(α)2−

1
β (K−1)2−K . Como

∫ 2

1
f(α)dα < +∞, para casi to-

do α, f(α) es finito, i.e. TK(α)� 2
1
β (K−1)2−K para K suficientemente grande,

(dependiendo de α). Tomamos uno de estos α. Sea π1(x) la cantidad de núme-
ros primos menores que x que son congruentes a 1 módulo 4. La cardinalidad
de PK está dada por el teorema de Dirichlet:

∣∣PK∣∣ = π1

(
2

(K−1)2

β

)
− π1

(
2

(K−2)2

β

)
∼ 2

(K−1)2

β

2(K − 1)2β log 2
.

Entonces, para K suficientemente grande, TK(α) < |PK |
2 . Esto significa que

si omitimos el elemento más grande de las cuádruplas malas, lo que nos queda

tiene cardinalidad mayor que |PK |2 . Si denotamos con QK el conjunto de los
elementos restantes y tomamos S como la unión de los conjuntos QK entonces
S es un conjunto de Sidon.

Sea S(x) la función de conteo de S. Como ap < 2(K−1)2+3(K−1)+2 < 2(K+1)2

para K =
⌊√

log x
log 2 − 2

⌋
el conjunto QK consiste de enteros menores que x, de

donde se sigue que S(x)� π1(2
1
β (K−1)2) = x

1
β+o(1). Como también tenemos

ap > 2(K−1)2+3(K−1)+1 > 2K
2

,

tomando K =
⌊√

log x
log 2 − 1

⌋
, el conjunto QK tiene elementos mayores que x

y entonces S(x) � π1

(
2

1
βK

2
)

= x
1
β+o(1). De estas estimaciones se sigue el

teorema. �X

Nuestra construcción está completamente basada en las ideas de Ruzsa. Las
simplificaciones técnicas que aporta la simplificación sugerida por Cilleruelo y
Ruzsa nos permite apreciar mejor su trabajo.
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Additive Combinatorics, que se llevó a cabo en el Centre de Recerca Matemati-
ca, Universidad Autónoma de Barcelona como parte de la tesis de maestŕıa del
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[4] Simon Sidon, Ein Satz Über Trigonometrische Polynome und Seine An-
wendungen in der Theorie der Fourier-Reihen, Math. Annalen 106 (1932),
536–539 (ge).

(Recibido en junio de 2010. Aceptado en septiembre de 2011)

Equipe Combinatoire et Optimisation, Faculté de Mathématiques
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