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Assessment of agro-physiological traits for 
identifying drought-tolerant durum wheat (Triticum 
durum Desf.) genotypes under rainfed conditions

Evaluación de rasgos agrofisiológicos para la identificación de 
genotipos de trigo duro (Triticum durum Desf.) tolerantes a la 

sequía en condiciones de secano
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Los mejoradores se centran en desarrollar genotipos de alto rendimiento que puedan crecer en regiones 
semiáridas sometidas a estrés hídrico. Se realizó un experimento de campo durante la temporada 
agrícola de 2020 a 2021 en el campo experimental del ITGC, Sétif. El objetivo de este estudio fue evaluar 
el desempeño de los genotipos de trigo duro en cuanto a características agronómicas en condiciones 
semiáridas. Los 10 genotipos evaluados fueron cultivados en bloques al azar con tres repeticiones. El 
análisis de varianza mostró que el efecto del genotipo fue significativo para la mayoría de los parámetros 
estudiados. El mejor rendimiento de grano se registró para los genotipos G3 (3,52 t ha-1), G2 (3,48 t ha-1) 
y G5 (2,89 t ha-1); así mantuvieron el mayor contenido de agua (81,09; 84,95 y 84,34%, respectivamente) 
y temperaturas más bajas en estas condiciones. La regresión lineal simple mostró que el rendimiento 
de grano se correlacionaba positivamente con el número de espigas y el número de granos por espiga. 
El análisis de componentes principales (PC) clasificó ambos genotipos G2 y G3 como genotipos de 
alto rendimiento de grano; por el contrario, los genotipos Jupare C 2001, Bouatleb y G1 fueron de bajo 
rendimiento.

Breeders are focused on developing high-yielding genotypes that can grow in semi-arid regions under 
water stress. A field experiment was conducted during the 2020 to 2021 cropping season at the 
experimental field of ITGC, Setif. The aim of this study was to assess the performance of durum wheat 
genotypes for agronomic traits growing under semi-arid conditions. The 10 genotypes evaluated were 
grown in a randomized block with three replications. Analysis of variance showed that the genotype 
effect was significant for most parameters studied. The best grain yield was recorded for genotypes 
G3 (3.52 t ha-1) G2 (3.48 t ha-1), and G5 (2.89 t ha-1); thus, they maintained the highest water content 
(81.09, 84.95, and 84.34%, respectively) and lower temperatures under these conditions. Simple linear 
regression showed that grain yield correlated positively with the number of spikes, and the number of 
grains per spike. The principal component (PC) analysis classified both genotypes G2 and G3 as high 
grain-yielding genotypes; by contrast, genotypes Jupare C 2001, Bouatleb, and G1 were low-yielding. 
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C
ereal cultivation is an ancient activity in the 
Algerian agricultural environment, practiced in 
all regions, including the Saharan zone, with 
a predominance of durum wheat cultivation 

(Chourghal et al. 2023). Durum wheat (Triticum durum 
Desf.) is an important cereal species and is cultivated 
worldwide over almost 17 million hectares (Xynias et 
al. 2020). It is a central crop grown in Algeria, and its 
production is based on the adoption of modern varieties 
derived from plant material from CIMMYT (the International 
Center for the Improvement of Maize and Wheat), ICARDA 
(the International Center for Agricultural Research in the 
Dry Areas), and traditional cultivars derived from local 
heritage varieties. Though durum wheat production covers 
only 24 to 55% of the country’s annual consumption (ITGC 
2022; Djoudi et al. 2024), it is insufficient to meet the 
country’s needs, estimated at 8.5 million metric tons per 
year (Hannachi and Fellahi 2023). This low production 
is often explained by unpredictable weather, long dry 
seasons, inconsistent rainfall, and soils that are poor in 
nutrients, which especially characterize the semi-arid 
regions (Krishnamurthy et al. 2011). Thus, Hussain et al. 
(2019) stated that several abiotic stresses, such as drought, 
chilling, high temperature, and salinity, are strongly affecting 
plant growth, development, and yield. Indeed, drought is 
one of the most important abiotic factors that reduces yield 
under rainfed conditions. Durum wheat varieties grown 
in a dry area must be able to tolerate water and thermal 
stress to improve their grain yield potential (Mekaoussi et 
al. 2021). According to Bendjama and Ramdani (2021), 
water stress is the main constraint, reducing yield and 
potential production. Mamrutha et al. (2022) mentioned 
drought as one of the critical factors that reduce wheat yield 
at the worldwide level. It can occur at each stage of plant 
growth and induce a series of morphological, physiological, 
biochemical, and molecular changes in plants (Bendada 
2021). Drought also negatively affects relative water 
content, gas exchange, and chlorophyll content (Othmani 
et al. 2021). They also observed that drought stress 
reduced stomatal conductance, which results in increased 
leaf temperature by limiting transpiration (Melandri et al. 
2020). Further, Bali and Sidhu (2019) cited that relative 
leaf water content is the primary factor that decreased the 
growth of wheat in response to drought stress. Drought not 
only reduced water content but also chlorophyll content 
(Keyvan 2010). The stress effect depends on its degree, 
duration, and stage of development. During the early 

stages of growth, stress involves multiple morphological 
and physiological alterations during germination (Jian et 
al. 2016). While, during flowering and grain-filling periods, 
drought can decrease the number of fertile tillers, ear 
fertility, grain weight, and aboveground biomass (Pour-
Aboughadareh et al. 2020). Improving grain yield has been a 
primary goal of most breeding programs. Then, developing 
drought-tolerant cultivars with high grain yields has been 
the principal goal of wheat breeders (Mohammadi et al. 
2014; Mao et al. 2022). Various physiological traits, such 
as relative water content, electrolyte leakage, chlorophyll 
content, and canopy temperature, have been used to select 
desirable genotypes with high yield and stress tolerance. 
Likewise, the selection of genotypes using yield is assisted 
by morphological and physiological characteristics related 
to yield under drought conditions (González-Ribot et 
al. 2017). This research was conducted to assess the 
variability of 10 durum wheat genotypes in response to 
drought conditions based on agro-physiological traits and 
to select desirable genotypes under these conditions.

MATERIALS AND METHODS
Site, Plant materials and Experiment design 
The experiment was carried out at the experimental 
site of the Technical Institute of Field Crops (ITGC) of 
Setif 36°09” N; 05°22” E; 981 meters above sea level 
(masl) during the 2021 to 2022 agricultural season. 
The experiment was set up on 14th December 2022, 
in a randomized complete block design (RCBD) with 
three replications. Each plot consisted of six lines 5 m 
long, spaced 0.2 m apart, which made up 6 m2 of plot 
dimension. The plant materials used consisted of ten 
durum wheat genotypes shown in (Table 1).

The soil is calcareous (Calcisol) with a silty clay texture, 
and organic matter content is 1.4% on the surface. The 
amount of monthly rainfall, temperature (min, max, 
mean) are presented in (Table 2).

Physiological traits
The chlorophyll content index (CCI) of each flag leaf 
was measured using a digital Chlorophyll Content Meter 
Model CCM-200 Plus. The relative water content (RWC) 
was determined at the heading stage according to Pask 
et al. (2012) method, five fresh leaves were weighted 
to record fresh mass (FM). The leaves were placed 
in distilled water for 24 h and weighed to get a turgid 
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Table 1. The pedigrees of the genotypes tested.

mass (TM). Samples were oven-dried at 65 °C for 24 h 
to record dry mass (DM). Relative water content was 
calculated as follows the equation 1. 

    Genotypes Pedigrees

G1 RASCON_37/GREEN_2/9/USDA595/3/D67.3/RABI//CRA/4/ALO/5/…
G2 MINIMUS_6/PLATA_16//IMMER/3/SOOTY_9/RASCON_37/9/…
G3 CMH77.774/CORM//SOOTY-9/RASCON-37/3/SOMAT-4
G4 CNDO/PRIMADUR//HAI-OU-17/3/SNITAN/4/SOMAT-3/
G5 CNDO/VEE//CELTA/3/PATA_2/6/ARAM_7//CREX/ALLA/5/ENTE/...
G6 SILVER 14/MOEWE//BISU_l/PATKA_3/3/PORRON_4/YUAN_l/9/...
Jupare C 2001 STINKPOT//ALTAR-84/ALONDRA
Bousselam Heider/Martes/Huevos de Oro. ICD-414
Boutaleb GTA dur /Ofanto

Oued El Bared Hedba3/Ofanto

Table 2. The climatic characteristics of the 2021–2022 agricultural season.

     Month Rainfall (mm)
Temperature (°C)

Max Min Mean
September 41.42 30.1 17.5 23.8
October   8.13 20.6 9.1 14.7
November  84.6 11.9 5 8.5
December   21.1    12 1.5 6.4
January 10.91 10.4 -1.4 4.3
February 28.69 13.6 1 7.2
March 46.98 12.8 4.4 8.6
April 82.29 17.2 5.9 11.7
May  6.09   25 10.5 17.8
June  0.25 35.3 18.2 27.1

EC1
REL(%) 100

EC2
= ×

(1)
(FM DM)

RWC 100
(TM DM)

−
= ×

−

The relative electrolyte leakage (REL%) of leaf tissues 
was measured using the method developed by Bajji et al. 
(2001), two leaves were collected, washed with tap water 
then with distilled water, and cut into 1 cm length segments. 
The samples were placed in tubes with 10 mL of distilled 
water and incubated for 24 h at room temperature in the 
laboratory. Subsequently, the first reading (EC1) was 
carried out. The final conductivity (EC2) was measured 
after placing tubes in a boiling water bath at 100 °C for 1 h. 

The relative electrolyte leakage (REL%) was calculated 
as follows the equation 2. 

(2)

The Canopy temperature (CT) measurements were taken 
on a sunny day using a portable infrared thermometer 
(Fluke Corporation. Everett.WA. USA). Readings were 
taken on sunny days between 11:00 to 14:00 hours.

Flag leaf area (FLA) was determined according to 
Spagnoletti-Zeuli and Qualset (1990). Five fresh leaves 
were collected, Leaf length (L) and wide (l) were measured 
and the area was calculated as follows the equation 3. 

    FLA (cm²) = 0.607 (L×l)        (3)
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Agronomic traits
At maturity, data were collected on grain yield (GY) (t  ha-1),
thousand kernel weight (TKW, g), number of spikes per 
m2 (NSm-2, spike), and number of grains per spike (NGS, 
grain).

Statistical analysis
An analysis of variance was performed for a measured trait 
at the 5% probability level to test the differences among 
genotypes, and the linear correlations were done to study 
the different associations among variables using Costat 
software (6.400, 1998). A principal component analysis 
(PCA) was done using the R Core Team. 

RESULTS AND DISCUSSION 
Physiological variation among genotypes 
Crop yield is mainly dependent on the different biochemical 
and physiological traits of genotypes, as well as the 
impact of environmental conditions. The results of the 
variance analysis showed significant differences among 
genotypes tested for all physiological parameters (Table 3). 
The differences between the physiological traits of 
genotypes depend on the distribution of genetics and 
environmental conditions.

The mean chlorophyll content index was significantly higher 
in variety Boutaleb (51.3 cci), while it was significantly the 
lowest in genotype G5 (32.6 cci) with an overall mean of 
42.83 cci. Leaf chlorophyll content is a major indicator of 
the photosynthetic ability of plant tissues. It can directly 
regulate the photosynthetic rate and reflect photosynthetic 
potential and primary production (Liu et al. 2015). The 
change in chlorophyll contents is a useful indicator to 
evaluate the influence of environmental stress on plant 
growth and yield (Kohila and Gomathi 2018). Thus, several 
studies reported that the amount of chlorophyll in flag 
leaves was significantly affected by many environmental 
factors (Kaya et al. 2015; Atar et al. 2020). According to 
Yang et al. (2022), genotypes tolerant to various stresses 
display higher chlorophyll content and thus maintain 
stronger photosynthetic efficiency. It was also reported 
that stay-green bread genotypes have also shown higher 
grain yield and total biomass in field conditions (Del Pozo 
et al. 2016). Also, the study of Mansouri et al. (2018) 
proved that drought conditions accelerate chlorophyll 
degradation, reducing leaf area and photosynthesis; thus, 
genotypes that stay green with delayed senescence can 

improve their performance under drought conditions. 
Naveed et al. (2014) mentioned that wheat genotypes 
were negatively influenced by severe drought stress at 
several growth stages, which reduced CO2 assimilation, 
stomatal conductance, transpiration rate, and chlorophyll 
content and later inhibited grain yield at both tillering and 
flowering stages. Besides, the flag leaf area played an 
important role in improving the grain yield of wheat. The 
mean values were changed from 18.85 (G2) to 26.74 (G5), 
with an average of 22.74 cm². The flag leaf area is a very 
important metric for assessing crop growth and is closely 
related to above-ground biomass and yield (Singh et al. 
2023). Larger flag leaf sizes tend to produce more grain 
per spike in wheat (Tshikunde et al. 2019) and barley 
(Alqudah and Thorsten 2015). Guendouz et al. (2016) 
stated that water stress greatly reduces leaf area; it may 
also decrease turgor pressure and cell expansion, which 
result in approximately the same dry mass being contained 
within a smaller leaf area thus raising density.
 
The minimum, maximum, and average values for relative 
water content were 70.19% (Oued El Bared), 91.24% (G4), 
and 82.82%, respectively. The relative water content of 
flag leaves is often used to assess the response of a plant 
to stress; it is a reliable index of leaf water deficit status at 
the time of sampling (Kohila and Gomathi 2018). Optimal 
plant water status is important for maintaining normal 
cell activity under water stress conditions (Mamrutha et 
al. 2022); thus, genotypes that maintain a higher relative 
water content, ensuring better hydration and more favorable 
internal water, showed better drought tolerance capacity 
(Kardile et al. 2018).  In addition, the finding of Bayoumi 
et al. (2015) stated that wheat genotypes that maintained 
higher relative water content under stress conditions 
were supposed to be drought-tolerant and show high 
grain yield. Thus, Bali and Sidhu (2019) mentioned that 
reduced leaf water potential and relative water content 
about increased drought stress. Recently, Chaouachi et 
al. (2023) mentioned that under water stress, plant species 
lose water mostly through transpiration, and then they 
tend to control their stomatal closure. Indeed, plants that 
can maintain relative water content under water stress 
are the most resistant. 

The main relative electrolyte leakage was significantly 
higher in G3 (90.93%), which was the sensitive one, though 
genotype variety Oued El Bared was the most susceptible 
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one with the lowest value (48.34%). The measurement of 
electrolyte leakage was considered a typical criterion to 
assess membrane integrity in response to environmental 
stresses (Slama et al. 2018). According to Chowdhury 
et al. (2017), maintaining the integrity and stability of 
membranes under water stress is a major element 
of drought resistance in plants. Indeed, membrane 
protection ensures cellular structures remain intact, 
enabling plants to ensure their survival and productivity 
in various environmental conditions. Ramadan et al. 
(2022) stated that relative electrolyte leakage increased 

with increasing levels of water deficit. Cell membrane 
stability is considered a possible selection criterion 
for grain yield since it has a reasonable relationship 
with plant performance under stressed environments 
(Anzer et al. 2017). Similarly, the finding of Rehman 
et al. (2016) described that wheat genotypes with high 
cell membrane stability produced a high grain yield. 
According to the results of Slama et al. (2018), increased 
electrolyte leakage under stress conditions is attributed 
to the disturbance of cell membranes, which probably 
induces protein degradation.

Table 3. Means values, maximum and minimum and statistical significance of physiological traits measured.

Genotypes CCI (cci units) FLA (cm²) RWC (%) REL (%) CT (° C)

G1   50.03a 21d  86.41ab  71.36cd 26.33abc

G2   39.40d 18.85e 81.09b   84.48abc    22d

G3    42.70c 26.74a  84.05ab 90.93a 22.43cd

G4    43.26c 20.93d 91.24a 70.29d 24.96bcd

G5    32.36e 26.63a  84.34ab  88.50ab 24.63bcd

G6    46.40b 21.08d 81.07b    76.03bcd 25.76bcd

Jupare c 2001    51.20a 22.43cd 88.35ab     79.60abcd 25.66bcd

Boussalem    37.26d 24.08b 81.73ab   85.60ab 27.46ab

Boutaleb    51.30a 22.20cd 79.69bc   85.47ab 30.33a

Oued El Bared    34.43e 23.23bc 70.19c  48.34e 26.20abcd

Mean   42.83         22.72 82.82 78.06 25.58
Max   51.30         26.74 91.24 90.93 30.33
Min   32.36         18.85 70.19 48.34   22
Genotype Effect   ***            *** * ***    *
LSD5 (%)     2.64           1.62    9.81 13.56   4.30

CCI: Chlorophyll content index; RWC (%): Relative water content; REL (%): Relative electrolyte leakage; CT (° C): Canopy temperature, 
FLA (cm²): flAg leaf area. ns; *, **, and *** non-significant, significant and highly significant effects at 5, 1, and 0.1% probability respectively.

The mean canopy temperature was significantly higher 
in both genotypes G2 and G3 with 22 and 22.43 °C, 
respectively while it was significantly the lowest in the 
variety Boutaleb (30.33 °C). Canopy temperature is 
an indirect measure of transpiration rate and stomatal 
conductance that may be useful in determining genotypic 
differences in drought response (Guendouz et al. 2021). 
This indicator is associated with plant water stress since 
the evaporative cooling involved in transpiration may 
cool leaves under ambient air temperature (Bazzaz et 
al. 2015). Wheat genotypes that have a cooler canopy 
during the heading stage and grain filling in the same 
environment can be an important indication of drought 

stress tolerance (Thapa et al. 2018). Canopy temperature 
was used by Singh et al. (2022) as an important screening 
criterion to identify potential heat-tolerant genotypes 
along with a heat susceptibility index based on grain 
below optimum and stress environments. Sohail et al. 
(2020) revealed that genotypes maintain a low canopy 
temperature under rainfall conditions due to their ability 
to extract water through a better root system and greater 
stomatal conductance. According to the results of 
Bazzaz et al. (2015), in water stress conditions, the 
foliar temperature of wheat genotypes increased due to 
an increase in breathing and a decrease in transpiration. 
Also, it was noticed that plants with a suitable supply of 
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water maintained their canopy temperature below the 
air temperature, while plants with an insufficient supply 
of water showed a canopy temperature above the air 
temperature.

Agronomic traits for the assessed durum wheat 
genotypes
Numerous agronomic characters that have been widely 
explored in wheat improvement programs influence grain 
yield. The data presented in Table 4 shows the genotype 
effect was significant for grain yield and the number of 
spikes per m². The highest-yielding genotypes were G3, 
G2, and G5 (3.52, 3.48, and 2.89 t ha-1, respectively), 
with an overall mean of 2.54 t ha-1. For thousand kernel 
weight was significantly higher in Boutaleb, G2, and 
G4 (34, 32.72, and 31.8 g, respectively) though it was 
significantly lowest in genotype Jupare C 2001 (28.4 g). 
The number of spikes for the genotypes evaluated was 
recorded from 320 to 556.66 spikes per m²; the genotype 
G2 recorded the highest value, while the genotypes G1, 
G3, G4, and G5 exhibited the lowest values with 346. 66, 
358.33, 346.66, and 320 spikes. The mean values for 
NG/S varied from 21 grains for the introduced genotype 

Jupare C 2001 to 43 grains for genotype G5, with a mean 
of 30.48 grains overall for all genotypes. Grain yield is a 
complex characteristic determined by three components: 
the number of spikes per area, grain number per spike, 
and grain weight. MajidiMehr et al. (2024) stated that water 
stress is a crucial environmental factor that decreases 
grain yield in bread wheat. Liu et al. (2015) proved that 
durum wheat genotypes were better adapted to water 
deficits and were able to maintain their grain numbers in 
unfavorable environments, which contributed to a smaller 
decrease in grain yield. Under stressful conditions in 
arid and semi-arid regions, the major purpose of wheat 
breeding programs is to develop durum wheat cultivars 
with high grain yields. It has been reported that wheat 
yield improvements are principally due to increases in 
grain weight and grain number per spike (Feng et al. 2018; 
Hu et al. 2022). Nouri et al. (2011) mentioned that the 
relative yield performance of genotypes in drought-stressed 
and favorable conditions helps to select the desirable 
genotypes. Hence, the development of high-yielding 
genotypes with acceptable stability and adaptability is a 
suitable method for improving durum wheat yield in drought 
conditions (Pour-Aboughadareh et al. 2020). 

Table 4. Means values, maximum and minimum and statistical significance of agronomic characters measured.

Genotypes    GY (t ha-1)     TKW (g) NS m-² (spike)    NG S-1 (grain)

G1 2.18bc 29.40ab 346.66b   29bcd

G2 3.48a 32.73ab 556.66a 26.66cd

G3 3.52a 29.03ab 358.33b   35abc

G4 2.23bc 31.80ab 346.66b  30.66bcd

G5 2.89ab 30.22ab   320b   43a

G6 2.46bc 29.14ab 448.33ab   38ab

Jupare c 2001 2.28bc 28.40b   400ab   21d

Boussalem 2.74ab 29.60ab 553.33a 28.66bcd

Boutaleb 1.73c   34a 376.66b 24.66cd

Oued El Bared 1.85c 30.40ab 451.66ab 29.66bcd

Mean 2.54 30.47 415.83 30.48
Max 3.52   34 556.66   43
Min 1.73 28.4   320   21
Genotype Effect   **    ns    ns    *
LSD5 (%) 0.86 5.17 173.78 13.87

GY (t ha-1): Grain yield; TKW (g): Thousand-kernel weight; NS m-² (spike): Number of spikes; NG S-1 (grains): Number of grains per spike. 
Ns; *, **, non-significant, significant, and highly significant effects at 5, 1, and 0.1% probability respectively.
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Correlation among assessed traits
Table 5 shows the correlations between different traits 
and grain yield. Grain yield had positive and significant 
correlation with number of grains per spike (0.43*) and 
a non-significant association with number of spikes NS 
(0.27ns). Fellahi et al. (2019) supports this finding, and 
several researchers agree, suggesting that higher numbers 
of grains per spike and number of spikelets increase 
grain yield (Würschum et al. 2018; Wolde et al. 2019). 
The number of kernels per spike has been suggested as 
a useful trait for improving wheat grain yield, especially 
under drought conditions (Bogale and Tesfaye 2016). By 
contrast, the findings of Iqbal et al. (2017) revealed a non-
significant relationship with these traits. Grain yield also 
had a significant positive correlation with thousand kernel 
weights (r=0.44 ns), while the study of Ullah et al. (2021) 
suggested a significant association between grain yield 
and thousand kernel weights. On the other hand, Boudersa 
et al. (2021) suggested that all yield components, such as 
grain weight, number of grains per spike, and biomass, 
have a considerable contribution to grain yield and that 
any direct or indirect disturbance affecting any of the yield 
components inevitably affects the grain yield. Hence, grain 

yield improvement has been significantly associated with 
increased thousand-kernel weight; it expresses the grain 
size and considerably enhances the final yield of wheat 
(Iqbal et al. 2015). Ullah et al. (2021) conclude that for 
bread wheat, increased grain weight directly contributed 
to improved grain yield. Canopy temperature showed 
significant negative relationships with grain yield; Singh et 
al. (2022) stated similar findings. Low canopy temperatures 
in durum wheat lines were associated with higher grain 
yields (Sohail et al. 2020). Furthermore, Oulmi et al. 
(2020) noticed that a high canopy temperature causes 
a decrease in grain yield. Chlorophyll content did not 
correlate significantly with grain yield while showing a 
negative correlation with the number of grains per spike 
(r=-0.38). Similar findings were reported by Mohammadi 
et al. (2018). The flag leaf area exhibited a significant 
relationship with the number of grains per spike (r=0.43*) 
and chlorophyll content (r=-0.37*). This result agrees with 
the findings of Nor et al. (2015), who found that leaf area 
showed a significant positive correlation with the number 
of grains per spike. Wang et al. (2022) also stated similar 
results and observed that wheat genotypes with a larger 
flag leaf tend to produce more kernels per spike.

Table 5.  Correlations among different traits measured.

Traits CCI RWC REL (%) FLA CT GY TKW NS NG S-1

CCI 1 - - - - - - - -
RWC   0.31ns 1 - - - - - - -
REL   0.12ns  0.14ns 1 - - - - - -
FLA -0.37* -0.09ns  0.26ns 1 - - - - -
CT    0.31ns -0.02ns  0.18ns -0.05ns 1 - - - -
GY  -0.26ns  0.14ns  0.30ns  0.22ns  -0.47** 1 - - -
TKW -0.26ns -0.17ns -0.02ns -0.26ns  -0.25ns  0.44ns 1 - -
NS -0.26ns -0.43ns   -0.025ns -0.37ns   0.37ns  0.27ns    0.33ns  1 -
NG S-1    -0.38*  0.02ns  0.11ns 0.43*    -0.1ns 0.43* -0.1ns  0.1ns 1

CCI: Chlorophyll content index; RWC (%): Relative water content; REL (%): Relative electrolyte leakage; CT (° C): Canopy temperature; FLA 
(cm²): Flag leaf area; GY (t ha-1): Grain yield; TKW (g): Thousand-kernel weight; NS m-² (spike): Number of spikes; NG S-1 (grains): Number 
of grains per spike.

Principal component analysis
The principal component analysis (PCA), one of the 
methods of multivariate analysis, elucidates among a set 
of traits which ones are decisive in genotypic differentiation 
and selection (Ara et al. 2018). The data shown in Table 6 
revealed that three components exhibited an eigenvalue 
near or higher than one. These three PCs accounted for 

72.36% of the total variation. Furthermore, an increase 
in the number of PCs was correlated with a decrease in 
Eigenvalues. Based on the results shown in Figure 1, PC1 
was highly correlated with grain yield and thousand kernel 
weights. genotypes G2 and G3 were positively correlated 
with PC1, suggesting that they had high productivity. 
While genotypes Jupare C 2001, Bouatleb, and G1 were 
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negatively correlated with PC1, which was described as a 
low-yielding genotype, this result is in accordance with the 
previous results of Frih et al. (2021) and Guendouz et al. 
(2021), who stated that grain yield and thousand kernel 
weights were associated with the two first components. 
The second component was a physiological axis, with 
relative electrolyte leakage and relative water content as 
the major contributors. The genotype G4 was positively 

connected with this axis and consequently was classified 
as a drought-tolerant line. By contract varieties, Oued El 
Bared and Boussallem were negatively correlated with 
this axis, suggesting that they were the most susceptible 
to drought conditions. PC3 was negatively connected with 
flag leaf area; both genotypes G5 and G6 were negatively 
associated with this axis, which was characterized by a 
large flag leaf area. 

Table 6. Eigenvalues, % proportion variance and % cumulative variance of three first components.

PC1 PC2 PC3

Variance 2.849 2.026 1.638
% of variance 31.65 22.51 18.20
Cumulative 31.65 54.16 72.36

Figure 1. Biplot of genotypes and measured parameters with the first three components of PCA.
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CONCLUSION 
Drought is one of the most important abiotic stresses that 
reduce grain yield in rainfed regions. This study allowed the 
evaluation of the different durum wheat genotypes based 
on their agro-physiological characteristics. The results 
obtained provide insights to facilitate the selection and 
cultivation of these genotypes under semi-arid conditions. 
An analysis of variance demonstrated a significant 
difference among genotypes for the majority of traits 
studied. The genotypes G2, G3, and G5 recorded the 
highest yield (3.52, 3.48, and 2.89 t ha-1, respectively) with a 
moderate water content and low values of temperature with 
G (22 °C), G3 (22.43 °C), and G3 (24.63 °C). Correlation 
among assed characters revealed that grain yield showed 
a positive and significant association with the number of 
grins per spike and a non-significant relationship with the 
number of spikes per m² and the thousand kernel weights. 
However, a non-significant association was found between 
all physiological traits. Moreover, the principal component 
analysis displayed three components. The first component 
related to GY and TKW genotypes associated with this 
axis exhibited high values of these traits. The second 
was the physiological axis; their genotypes were the most 
tolerant to semi-arid conditions. The results of the mean 
performance revealed that the genotypes Bousselam, 
G2, and G5 were the appropriate genotypes for growing 
under semi-arid conditions.
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