
 
 
 

ISSN-p: 0123-7799 
ISSN-e: 2256-5337 

 
 

Vol. 27, no. 60, e3052, 2024 
 

 
 
 

Received: 03 April 2024 
Accepted: 16 July 2024 

Available: 01 August 2024 
 
 

©Instituto Tecnológico Metropolitano 
Este trabajo está licenciado bajo 

una Licencia Internacional 
Creative Commons Atribución 

(CC BY-NC-SA) 
 
 

 
 

Postcontrast Medical Image Synthesis in Breast 
DCE-MRI Using Deep Learning 

Síntesis de imagen médica postcontraste en estudios de 
DCE-MRI de mama usando aprendizaje profundo 

 

  Sara Cañaveral1; 
 Carlos Mera-Banguero2; 

 Rubén D. Fonnegra3 
 
 
  
 
 

 
  

1Instituto Tecnológico Metropolitano, Medellín-Colombia, 
saracanaveral207005@correo.itm.edu.co 

2 Instituto Tecnológico Metropolitano, Universidad de Antioquia, 
Medellín-Colombia  

carlos.mera@udea.edu.co 
3 Institución Universitaria Pascual Bravo, Medellín-Colombia,  

ruben.fonnegra@pascualbravo.edu.co 
 

How to cite / Cómo citar / 
 
S. Cañaveral, C. Mera-Banguero, and R. D. Fonnegra, “Postcontrast 
Medical Image Synthesis in Breast DCE-MRI Using Deep Learning,” 
TecnoLógicas, vol. 27, no. 60, e3052, 2024.  
https://doi.org/10.22430/22565337.3052 

 
 

 

https://doi.org/10.22430/22565337.2992
https://doi.org/10.22430/22565337.2992
https://orcid.org/0000-0001-5861-6148
mailto:saracanaveral207005@correo.itm.edu.co
https://orcid.org/0000-0002-6513-3053
https://orcid.org/0000-0001-6589-1981


S. Cañaveral et al.  TecnoLógicas, Vol. 27, no. 60, e3052, 2024 

Página 2 | 18 

Abstract 
Breast cancer is one of the leading causes of death in women in the world, so its early 

detection has become a priority to save lives. For the diagnosis of this type of cancer, there 
are techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), 
which uses a contrast agent to enhance abnormalities in breast tissue, which improves the 
detection and characterization of possible tumors. As a limitation, DCE-MRI studies are 
usually expensive, there is little equipment available to perform them, and in some cases the 
contrast medium can generate adverse effects due to an allergic reaction. Considering all of 
the above, the aim of this work was to use deep learning models for the generation of 
postcontrast synthetic images in DCE-MRI studies. The proposed methodology consisted of 
the development of a cost function, called CeR-Loss, that takes advantage of the contrast 
agent uptake behavior. As a result, two new deep learning architectures were trained, which 
we have named G-RiedGAN and D-RiedGAN, for the generation of postcontrast images in 
DCE-MRI studies, from precontrast images. Finally, it is concluded that the peak signal-to-
noise ratio, structured similarity indexing method, and mean absolute error metrics show 
that the proposed architectures improve the postcontrast image synthesis process, preserving 
greater similarity between the synthetic images and the real images, compared to the state-
of-the-art base models. 
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Resumen 

El cáncer de mama es una de las principales causas de muerte en mujeres en el mundo, por lo 
que su detección de forma temprana se ha convertido en una prioridad para salvar vidas. Para el 
diagnóstico de este tipo de cáncer existen técnicas como la imagen de resonancia magnética 
dinámica con realce de contraste (DCE-MRI, por sus siglas en inglés), la cual usa un agente de 
contraste para realzar las anomalías en el tejido de la mama, lo que mejora la detección y 
caracterización de posibles tumores. Como limitación, los estudios de DCE-MRI suelen tener un 
costo alto, hay poca disponibilidad de equipos para realizarlos, y en algunos casos los medios de 
contraste pueden generar efectos adversos por reacciones alérgicas. Considerando lo anterior, este 
trabajo tuvo como objetivo el uso de modelos de aprendizaje profundo para la generación de 
imágenes sintéticas postcontraste en estudios de DCE-MRI. La metodología consistió en el 
desarrollo de una función de costo denominada pérdida en las regiones con realce de contraste 
que aprovecha el comportamiento de la captación del agente de contraste. Como resultado se 
entrenaron dos nuevas arquitecturas de aprendizaje profundo, las cuales hemos denominado G-
RiedGAN y D-RiedGAN, para la generación de imágenes postcontraste en estudios de DCE-MRI, 
a partir de imágenes precontraste. Finalmente, se concluye que las métricas proporción máxima 
señal ruido, índice de similitud estructural y error absoluto medio muestran que las arquitecturas 
propuestas mejoran el proceso de síntesis de las imágenes postcontraste preservando mayor 
similitud entre las imágenes sintéticas y las imágenes reales, esto en comparación con los modelos 
base en el estado del arte. 
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1. INTRODUCTION 
 

Breast cancer is a chronic non-communicable disease caused by DNA alterations that 
affect the normal division and growth of tissue cells. Due to its high incidence rates—
particularly among the female population—it is one of the major public health concerns 
worldwide [1]. Moreover, it is a leading cause of cancer-related deaths globally [2]. According 
to the Global Cancer Observatory (GLOBOCAN), breast cancer accounted for 11.5 % of new 
cancer cases around the world in 2022 [3]. 

In general terms, breast cancer can be classified into five main types [4]. The first type, 
Lobular Carcinoma in Situ (LCIS), is a benign condition occurring in the breast lobules that 
does not spread outside of them. The second type, Ductal Carcinoma in Situ (DCIS), is a 
noninvasive neoplasm that develops in the milk glands or ducts without spreading beyond 
them. The third type, Infiltrating Ductal Carcinoma (IDC), begins in the ducts and may 
spread to surrounding breast tissues. The fourth type, Infiltrating Lobular Carcinoma (ILC), 
originates in the breast lobules and is often more challenging to detect due to its tendency to 
spread in a scattered manner rather than forming a lump. The fifth type, inflammatory 
breast cancer, is a rare and aggressive form that typically presents as redness, swelling, and 
warmth in the breast rather than a lump. It requires immediate treatment due to its rapid 
spread. 

The treatment and prognosis of breast cancer depend on its type and specific 
characteristics. Nevertheless, early detection and timely treatment are crucial for preventing 
complications, improving patient prognosis, and reducing mortality rates [5]. Among the 
most commonly used methods for breast cancer detection are mammography and breast 
ultrasound. Mammography involves using low-dose X-rays to visualize internal breast 
tissues and is considered the standard detection method due to its low cost and ease of use 
[6]. However, it is only recommended for patients over 40 years of age and is contraindicated 
in pregnant women or in follow-ups due to radiation exposure. In contrast, ultrasound 
employs sound waves to visualize breast tissue [7], but it is highly dependent on the 
operator’s expertise. Furthermore, both methods may be ineffective in patients with dense 
breast tissue [6], [8]. 

When mammography or ultrasound results are inconclusive, more specialized tests are 
employed, which involve the intravenous administration of a contrast agent [9]. This chemical 
compound highlights cancer cells in the breast tissue by leveraging their elevated metabolic 
activity. Three such tests are Contrast-Enhanced Digital Mammography (CEDM), Dynamic 
Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI), and Contrast-Enhanced 
Ultrasound (CEUS). CEDM requires taking two X-ray images of the breast: one before the 
administration of the contrast agent, employing low radiation levels (conventional 
mammography); and another after the application of the contrast agent, using high radiation. 
The two images are subsequently combined to create a recombined image, which highlights 
regions where the contrast agent has been absorbed in the tissue [10].  

For its part, DCE-MRI uses magnetic waves to capture the absorption of the contrast agent 
over time, as it reacts in an accelerated manner in tissues with potential lesions [11]. To this end, 
the system takes a series of initial images of both breasts before the contrast agent is 
administered, followed by a series of images after its administration. This method is more 
sensitive and provides more accurate information about the state of the breast and any possible 
lesions, thus enabling the characterization of potential tumors. Regarding CEUS, it employs an 
intravascular contrast agent that allows real-time assessment of microcirculation and vascular 
and tissue perfusion [12]. 
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Despite their advantages, these methods have limitations that include elevated costs, long 
acquisition times, and limited availability of equipment. Additionally, the contrast agent may 
cause allergic or adverse reactions in patients [13]. In the search for solutions to these setbacks, 
numerous studies have demonstrated the potential of deep learning neural networks to generate 
synthetic images that replicate the effect of the contrast agent without actually using it [14]-[18], 
while maintaining the visual quality of the images. On this background, the present study 
proposes a novel cost function, called Contrast-enhanced Region Loss (CeR-Loss), which 
leverages the contrast agent uptake behavior to generate synthetic post-contrast images from 
pre-contrast images in DCE-MRI studies. This function is employed in two new deep learning 
architectures, G-RiedGAN and D-RiedGAN, which focus on contrast-enhanced regions to 
improve the generation of synthetic post-contrast images. 

 
 

2. LITERATURE REVIEW 
 

Deep learning is a branch of machine learning that relies on artificial networks, which 
consist of interconnected layers of artificial neurons that can self-adjust based on the input 
and the amount of data they process [19]. One of the application areas of deep learning 
networks is image synthesis, which involves generating artificial images from a visual or 
textual description of their content. In the medical field, image synthesis has been employed, 
for example, for augmenting datasets to train models for disease diagnosis [20]; improving 
image resolution in specific imaging modalities [21]; segmenting regions of interest within 
images [22]; and generating images from data obtained through another examination 
modality [23]. The importance of image synthesis in medicine lies in its potential to enhance 
diagnostic accuracy, reduce the time and cost of capturing diagnostic images, and expand the 
availability of these medical examinations [24]. 

Image synthesis models can be broadly classified into two categories: autoencoders and 
Generative Adversarial Networks (GANs). Autoencoders, on the one hand, are architectures 
that comprise an encoder, which reduces the dimensionality of input data to learn an abstract 
(or latent) representation of its distribution; and a decoder, which reconstructs information 
from the latent space into a higher-dimensional space [25]. A variation of autoencoders, 
known as U-Net, addresses the information loss problem by copying information from the 
encoder layers to the decoder layers, thus improving the reconstruction of information in the 
higher-dimensional space [25], [26]. 

GANs, on the other hand, consist of a generator and a discriminator. The generator is a 
convolutional network that attempts to learn the latent distribution of the real data to generate 
synthetic information from a random noise sample. For its part, the discriminator is a 
complementary convolutional network that acts as an expert in distinguishing between real and 
synthetic information. The training of both networks is adversarial, that is, the generator strives 
to enhance its generation process to deceive the discriminator, while the discriminator seeks to 
refine its expertise to avoid being deceived by the generator. This adversarial learning process gives 
GANs their name [27].  

Image synthesis methods can be employed to generate post-contrast images from pre-contrast 
images in DCE-MRI and CEDM studies. This application, known as domain shift, entails 
transforming a pre-contrast image (x) into a post-contrast image (y) [21], [23]. In this line, the 
authors of [15] trained a shallow generative architecture called SD-CNN to generate synthetic 
patches of post-contrast recombined images in CEDM studies from patches of full-field digital 
mammography images. In this study, two independent image repositories were used to extract the 
patches. The first dataset is INbreast [28], a public database from which 89 studies with BI-RADS 
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categories 1 and 2 (benign) and 5 and 6 (malignant) were taken. The second database is proprietary 
and contains 49 studies with BI-RADS categories 4 and 5. All results were confirmed by biopsy, 
resulting in 23 benign and 26 malignant cases. The authors noted that using synthetic patches 
generated with their architecture improved the accuracy of mammography patch classifiers. 
However, a limitation of this architecture is that it is only capable of generating 3x3 synthetic 
patches from 15x15-pixel patches, which restricts its use in full image synthesis. Moreover, the 
shallowness of the network leads to few levels of abstraction, thus reducing its ability to synthesize 
complex structures such as those defining breast tissues.  

In a subsequent study, the authors proposed a U-Net architecture called RiedNet [29]. 
This architecture introduced several modifications, including replacing pooling layers with 
convolutional and deconvolutional layers and incorporating a residual inception block to 
address the gradient fading problem caused by the network’s depth. The purpose of RiedNet 
was the synthetic generation of images in the medical context and its evaluation involved 
obtaining post-contrast recombined images of CEDM studies from low-energy images. 
Nevertheless, since the network was trained to synthesize 128x128-pixel blocks, the complete 
image synthesis considered the average of the generated blocks, potentially resulting in a 
blurring effect on the reconstructed breast tissues. In this case, the experiments were 
conducted on 139 contrasted mammography studies, with 112 used for training and 27 for 
testing. 

Regarding the use of DCE-MRI studies for breast cancer detection, the authors of [30] 
employed a conditional GAN architecture called Pix2Pix [31], designed to generate fat-
suppressed T1-weighted contrast-enhanced images from non-contrast images. The Pix2Pix 
architecture comprised a U-Net generator and a PatchGAN discriminator [31]. Particularly, 
the images used in this study were captured with a resolution of 3T and subsequently resized 
to 512x512 pixels. A total of 2,620 image pairs from 48 DCE-MRI studies were employed, 
with 2112 reserved for training, 418 for validation, and 90 for testing. Although the model 
tends to present errors in dense breast images, the authors emphasize the potential of the 
Pix2Pix architecture for synthetic generation of contrast-enhanced DCE-MRI images. 

Another contribution to this field is the study presented in [17], which proposed a GAN 
architecture called TSGAN. TSGAN consists of four models: a U-Net model trained to 
generate post-contrast T1-weighted images from pre-contrast images; a global discriminator 
that focuses on differentiating real from fake post-contrast images; a local discriminator that 
distinguishes between real and fake regions of interest; and a U-Net model trained to 
generate segmentation masks over breast lesions. Similarly, in [32], the authors introduced 
an architecture called EDLS to synthesize dynamic sequences from T1WI images in MRI 
studies, improving lesion identification without using a contrast agent. Likewise, the authors 
of [33] explored the use of GAN architectures to generate realistic breast MRI images to 
enhance breast lesion detection. Additionally, in [34], the authors employed a CycleGAN 
architecture to translate images between different domains without the need for matched 
data pairs, thereby raising the quality of the synthesized images. 

Furthermore, in [35], the authors presented a TDM-StarGAN architecture designed to 
generate synthetic images of conventional DCE-MRI study phases from ultrafast DCE-MRI 
study images. To this end, the authors modified the StarGAN architecture [29] for use with 
paired images. In addition, they considered the loss in the difference maps of the generated 
images and the detection area, obtained from the difference between the last post-contrast 
image and the pre-contrast image. They concluded that the proposed model outperformed the 
baseline models (Pix2Pix and StarGAN) by accurately synthesizing the regions associated 
with lesions. 
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In other imaging modalities, the study presented in [36] proposed the use of a Pix2Pix 
architecture to enhance the quality of low-count Positron Emission Tomography (dbPET) 
images, which is often compromised by patient respiration. Experiments were conducted on 
49 cases, including 32 with abnormal results and 17 with normal results. To this end, each 
image was resized to 958x940 pixels. The authors posit that the Pix2Pix architecture can 
effectively address this problem by improving the quality of dbPET images with short 
acquisition times. 

Aiming at reducing the radiation doses used in breast cancer diagnostic tests, the authors 
of [18] and [37] trained various models to generate digital mammography images from 
tomosynthesis images. The authors introduced an architecture called GGGAN, which 
employs a U-Net generator and a variant of the Pix2PixHD discriminator. The loss function 
for GGGAN uses the difference maps of the gradients of the images generated in specific 
intermediate layers. 

In a context other than breast cancer diagnosis, the authors of [38] designed an 
architecture based on Pix2Pix, called Ea-GAN. It included the difference maps of the edges 
of the generated and real images in the loss function of both the discriminator and the 
generator. This inclusion aimed to enhance the synthesis of these elements and mitigate the 
smoothing effect commonly observed in U-Net networks [14]. This study employed the 
BRATS2015 database [39], which contains MRI images of 74 patients with a resolution of 
240x240x155 voxels. The images were preprocessed and normalized with intensity values 
ranging from -1 to 1. 

Despite numerous attempts to develop generative models for synthesizing diagnostic 
images in breast cancer detection, there are still significant limitations. This is largely due 
to the high variability in breast tissue density, which affects the performance of generative 
models when using contrast agents, as the visibility of these agents diminishes with 
increasing pixel intensity. 

To address these challenges, this study proposes a novel architecture called D-RiedGAN. 
This architecture builds upon the Pix2Pix framework by incorporating residual inception 
blocks but focuses on contrast-enhanced regions in DCE-MRI studies.  
 

 
3. METHODOLOGY 
 

The proposed methodology begins with the implementation of a three-model baseline to 
synthesize fat-saturated T1-weighted images showing early response to contrast medium in 
DCE-MRI studies. Building on this baseline, two mixed architectures and two new 
architectures (G-RiedGAN and D-RiedGAN) are developed. These generative models are 
trained to generate synthetic post-contrast images, 𝑦𝑦� = 𝐺𝐺(𝑥𝑥), from non-contrast images, x. 
The goal is for the generative model, 𝐺𝐺(𝑥𝑥), to learn the early response to the contrast medium, 
thereby making the synthetic images resemble the real post-contrast images (y). 

 
3.1 Optimization of contrast-enhanced regions 

 
Traditional models for image synthesis have achieved significant advancements in 

natural image processing but face multiple limitations, especially when applied to specialized 
images such as medical ones. To overcome these challenges, this study proposes integrating 
a cost function that captures information from contrast-enhanced regions during training. 
This function aims to guide the synthesis process to accurately generate contrast 
enhancement in post-contrast images. 
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In terms of pixel intensity, the enhancement after contrast agent administration is 
identified by the highest intensities in the post-contrast image. Particularly, a global 
thresholding strategy, as shown in (1), is used to detect these high-intensity pixels. Here, 
𝑦𝑦(𝑖𝑖, 𝑗𝑗) is the pixel at position (𝑖𝑖, 𝑗𝑗) in the post-contrast image and T is the threshold value. 

 
𝐹𝐹𝑦𝑦(𝑖𝑖, 𝑗𝑗) = �1, if 𝑦𝑦(𝑖𝑖, 𝑗𝑗) > 𝑇𝑇

0, otherwise  (1) 
 
Due to the sensitivity of T to intensity variations in images from different DCE-MRI 

studies, this parameter is set for each image using the 90th percentile of its histogram. In 
other words, the 10 % of the image pixels with the highest intensities are retained as 
contrast-enhanced regions. To refine these regions, closing and opening operators are 
employed using a 7x7-pixel circular structuring element, which smooths contours and 
removes small gaps between adjacent regions. This process is applied to both synthetic and 
real post-contrast images, generating real 𝐹𝐹𝑦𝑦 and synthetic 𝐹𝐹𝐺𝐺(𝑥𝑥) contrast enhancement 
masks. 

Once the contrast-enhanced regions are identified, a cost function is used to minimize the 
discrepancies between these regions in real and synthetic images. Since contrast-enhanced 
regions are binary, optimizing them involves employing a cost function based on set 
similarity, such as the Jaccard index [40]. The Jaccard index between the real 𝐹𝐹𝑦𝑦 and 
generated 𝐹𝐹𝐺𝐺(𝑥𝑥) contrast regions is computed using (2). 

 

𝐽𝐽𝐽𝐽(𝐹𝐹𝑦𝑦 ,𝐹𝐹𝐺𝐺(𝑥𝑥))  =
 |𝐹𝐹𝑦𝑦 ∩  𝐹𝐹𝐺𝐺(𝑥𝑥)|

|𝐹𝐹𝑦𝑦|  +  |𝐹𝐹𝐺𝐺(𝑥𝑥)|  −  |𝐹𝐹𝑦𝑦  ∩  𝐹𝐹𝐺𝐺(𝑥𝑥)|
 (2) 

 
Because the Jaccard index is neither convex nor differentiable, its optimization via 

gradient descent (in the context of neural networks) can result in suboptimal solutions or 
convergence problems. [41] recommend employing a convex approximation to derive an 
optimizable function from the discrete function, which can then be optimized by first-order 
methods like gradient descent. This approach, based on the Lovász surrogate approximation, 
is estimated from a set of erroneous predictions, 𝑚𝑚(𝑐𝑐) ∈ 𝑅𝑅𝑝𝑝 for class 𝑐𝑐 ∈  𝐶𝐶 rather than the 
vector of discrete predictions {0, 1}𝑝𝑝. Given that function ∆: {0, 1}𝑝𝑝 ↦ 𝑅𝑅𝑝𝑝 is submodular (similar 
to function 𝐽𝐽𝐽𝐽), its Lovász extension is defined by (3). 

 

∆�∶ 𝑚𝑚 ∈ ℝ𝑝𝑝  ↦�  𝑚𝑚𝑖𝑖𝑔𝑔𝑖𝑖(𝑚𝑚)
𝑝𝑝

𝑖𝑖=1

 (3) 

 
Here, 𝑔𝑔𝑖𝑖(𝑚𝑚)  =  ∆({𝜋𝜋1. . .𝜋𝜋𝑖𝑖})  −  ∆({𝜋𝜋1. . .𝜋𝜋𝑖𝑖−1}), with 𝜋𝜋 being a permutation of the 

components of m in descending order. Function ∆� is the strict convex closure of ∆, is piecewise 
linear, and interpolates the values of ∆ in 𝑅𝑅𝑝𝑝. Equation (4) is employed to compute the Lovász 
function of the Jaccard index in (2) ∆�𝐽𝐽𝐽𝐽. 

 

𝐿𝐿𝐿𝐿𝐿𝐿á𝑠𝑠𝑠𝑠 (𝑓𝑓(𝑦𝑦, 𝑦𝑦∗)) =  
1

|𝐶𝐶|
 �∆�𝐽𝐽𝐽𝐽 (𝑚𝑚(𝑐𝑐))
𝑐𝑐

𝑖𝑖=1

 (4) 

 
Where 𝑓𝑓(𝑦𝑦,𝑦𝑦∗) estimates the error vector m from the real or generated contrast masks 

after applying the SoftMax function. To avoid variations caused by batch size and the number 
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of classes, the Lovász function is optimized by combining it with the Binary Cross-Entropy 
(BCE) described in (5), as suggested by the authors of [41]. 

 

𝐵𝐵𝐵𝐵𝐵𝐵�𝐹𝐹𝑦𝑦,𝐹𝐹𝐺𝐺(𝑥𝑥)� = −
1
𝐶𝐶
�(𝐹𝐹𝑦𝑦 ∙ log�𝐹𝐹𝐺𝐺(𝑥𝑥)� + (1 − 𝐹𝐹𝑦𝑦) ∙ log�1 − 𝐹𝐹𝐺𝐺(𝑥𝑥)�)
𝐶𝐶

𝑖𝑖=1

 (5) 

 
Finally, to optimize the proposed models, a cost function combining BCE with the Lovász 

surrogate extension is used specifically for the contrast-enhanced regions. This combined 
function, termed CeR-Loss, is presented in (6). 

 
CeR-Loss(𝐹𝐹𝑦𝑦 ,  𝐹𝐹𝐺𝐺(𝑥𝑥))  =  (1 − 𝜆𝜆𝐿𝐿𝐿𝐿𝐿𝐿á𝑠𝑠𝑠𝑠)𝐵𝐵𝐵𝐵𝐵𝐵�𝐹𝐹𝑦𝑦,𝐹𝐹𝐺𝐺(𝑥𝑥)� + 𝜆𝜆𝐿𝐿𝐿𝐿𝐿𝐿á𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑓𝑓(𝐹𝐹𝑦𝑦 ,𝐹𝐹𝐺𝐺(𝑥𝑥))) (6) 

 
3.2 G-RiedGAN y D-RiedGAN 

 
Figure 1a illustrates the general architecture of the first proposed model, G-RiedGAN. 

This architecture integrates, after the generator, a filter for detecting contrast-enhanced 
regions, which provides feedback to the generator to guide it in accurately replicating 
contrast enhancement. In this case, the PatchGAN discriminator, which identifies whether 
pre-contrast and post-contrast image pairs are real or synthetic, remains unchanged. The 
loss function of the G-RiedGAN generator, shown in (7), considers the overall loss from the 
pixel-level difference between the real and generated images, as well as the loss from the 
contrast-enhanced regions (CeR-Loss). 

 
𝐿𝐿𝐺𝐺−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺 = 𝐸𝐸𝑥𝑥 �log �1 − 𝐷𝐷�𝑥𝑥,𝐺𝐺(𝑥𝑥)��� + 𝜆𝜆𝑙𝑙1𝐸𝐸𝑥𝑥,𝑦𝑦��|𝑦𝑦 −  𝐺𝐺(𝑥𝑥)|�� + CeR-Loss(𝐹𝐹𝑦𝑦,𝐹𝐹𝐺𝐺(𝑥𝑥)) (7) 
 
The proposed D-RiedGAN architecture, for its part, depicted in Figure 1b, includes the 

difference between the contrast-enhanced regions in both the generator and the 
discriminator. This allows the generator to focus more on these regions by considering them 
in the adversarial counterpart, thus improving the quality of the synthesized images. 

For adversarial learning, the D-RiedGAN discriminator is modified to receive a triplet of 
images: the input image, the synthetic or real image, and the contrast-enhanced regions of 
the real or synthetic image. The loss functions of the D-RiedGAN generator and 
discriminator, defined in (8) and (9), respectively, include the loss from the contrast-enhanced 
regions (CeR-Loss). 

 
𝐿𝐿𝐷𝐷−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺 = 𝐸𝐸𝑥𝑥�log�1 − 𝐷𝐷(𝑥𝑥,𝐺𝐺(𝑥𝑥),𝐹𝐹(𝐺𝐺(𝑥𝑥)))�� + 𝜆𝜆𝑙𝑙1𝐸𝐸𝑥𝑥,𝑦𝑦��|𝑦𝑦 − 𝐺𝐺(𝑥𝑥)|�� + CeR-Loss(𝐹𝐹𝑦𝑦,𝐹𝐹𝐺𝐺(𝑥𝑥)) (8) 

𝐿𝐿𝐷𝐷−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷 = −𝐸𝐸𝑥𝑥,𝑦𝑦 �log �𝐷𝐷�𝑥𝑥,𝑦𝑦,𝐹𝐹(𝑦𝑦)��� − 𝐸𝐸𝑥𝑥  [log(1 − 𝐷𝐷(𝑥𝑥,𝐺𝐺(𝑥𝑥),𝐹𝐹(𝐺𝐺(𝑥𝑥))))]  (9) 
 

3.3 Baseline models 
 

The Pix2Pix [31], RiedNet [29], and Ea-GAN [38] architectures were employed as 
benchmarks to evaluate the proposed model. These architectures were chosen due to their 
proven effectiveness in tackling problems related to medical image synthesis across various 
modalities. 
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Figure 1. G-RiedGAN and D-RiedGAN architectures. Source: Own work. 

 
3.3.1 Pix2Pix  

 
The Pix2Pix architecture [31] uses conditional information to guide the image generation 

process, allowing it to create an image in one domain based on an input image from another 
domain. It features a U-Net generator, a PatchGAN discriminator, and an objective function 
that combines adversarial loss (to make the generated images indistinguishable from the real 
ones) with pixel-level loss (to ensure content coherence between the generated and real 
images). A notable advantage of this architecture, as emphasized in the literature, is its 
capability to preserve fine details in the generated images, which is crucial for post-contrast 
image generation. 
 
3.3.2 RiedNet 

 
RiedNet [29] is an adapted U-Net architecture that employs convolutional and 

deconvolutional layers, along with a residual inception block to mitigate gradient fading 
issues. In this study, the RiedNet architecture was trained to synthesize complete images. 
Furthermore, the ReLU activation function in the intermediate layers was replaced with the 
Leaky ReLU function to maintain a small positive slope and avoid complete suppression of 
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information in certain parts of the neural network [42]. The activation function of the output 
layer was also changed to the hyperbolic tangent function. These adjustments were made to 
preserve the value range of the input images during encoding. 

 
3.3.3 Ea-GAN 

 
Unlike the previous two architectures, Ea-GAN [38] incorporates edge information from 

both the original and synthesized images, calculated using a Sobel filter, into the learning 
process. This edge information helps the architecture focus on synthesizing the textures and 
edges of objects in the images. The Ea-GAN architecture has two variations: gEa-GAN, which 
integrates edge differences only in the generator’s loss function, and dEa-GAN, which 
includes edge differences in both the generator and discriminator. 

To improve the synthesis process, these three foundational architectures were combined. 
The first combination, called RiedGAN, integrates a PatchGAN discriminator into the 
RiedNet architecture to enhance the synthesis process using an adversarial learning scheme. 
The key distinction between this network and the original Pix2Pix is that it employs the U-
Net generator from the RiedNet architecture rather than the traditional U-Net generator.  

Building on the idea of using edge maps from the Ea-GAN architecture, edge maps were 
incorporated into the RiedGAN framework, resulting in two new models: gEa-RiedGAN, 
which integrates edge maps into the RiedGAN generator, and dEa-RiedGAN, which 
incorporates edge map information into both the generator and the discriminator. 

 
3.4 Evaluation metrics 
 

To assess the quality of the synthetic images, three widely used quantitative metrics were 
employed: Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR), and Structural 
Similarity Index Measure (SSIM). 

The Mean Absolute Error (MAE) quantifies the pixel-to-pixel difference between the 
intensities of two images. For a real image, y, and a generated image, 𝐺𝐺(𝑥𝑥), both of size 𝑚𝑚 𝑥𝑥 𝑛𝑛 
pixels, MAE is computed as detailed in (10). A low MAE value signifies minimal error 
between the synthesized image and the reference image, with values close to 0 being ideal, 
i.e., indicating high accuracy. Conversely, a high MAE value reflects larger error and lower 
accuracy in image synthesis. 

 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑦𝑦,𝐺𝐺(𝑥𝑥)� =  
1
𝑚𝑚𝑚𝑚

 �� |𝑦𝑦(𝑖𝑖,𝑗𝑗)  −  𝐺𝐺(𝑥𝑥)(𝑖𝑖,𝑗𝑗)|
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

  (10) 

 
The Peak Signal-to-Noise Ratio (PSNR) represents the ratio between the maximum 

possible energy of a signal and the noise affecting the signal’s representation, measured in 
decibels (dB) [43]. The PSNR is defined by the formula in (11), where 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 denotes the 
maximum possible intensity value for the images. A high PSNR value indicates greater 
similarity between the synthesized and reference images, while a low PSNR value suggests 
greater differences between them. 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑦𝑦,𝐺𝐺(𝑥𝑥)� = 10 ∗ log10 � 
𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖2

1
𝑚𝑚𝑚𝑚  ∑ ∑ |𝑦𝑦(𝑖𝑖,𝑗𝑗)  −  𝐺𝐺(𝑥𝑥)(𝑖𝑖,𝑗𝑗)|2𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

� (11) 
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The Structural Similarity Index Measure (SSIM) considers the strong interdependencies 
between pixels, especially those in close proximity. These dependencies include information 
about luminance, contrast, and structure of the objects in the image and can be estimated 
jointly as shown in Equation (12) [43]. In this equation, 𝜇𝜇, 𝜎𝜎, and 𝜎𝜎2 represent the means, 
standard deviations, and covariances between the images, respectively, while 𝑐𝑐1 and 𝑐𝑐2 are 
variables that stabilize the division in cases where the denominators are close to zero. An 
SSIM value close to 1 indicates high structural similarity between the synthesized image and 
the reference image, whereas a low SSIM value reflects reduced structural similarity. Values 
below 0.4 generally suggest poor quality in terms of image structure and texture. 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑦𝑦,𝐺𝐺(𝑥𝑥))  =  
(2𝜇𝜇𝐺𝐺(𝑥𝑥)𝜇𝜇𝑦𝑦  +  𝑐𝑐1)(2𝜎𝜎𝐺𝐺(𝑥𝑥),𝑦𝑦 +  𝑐𝑐2)

�𝜇𝜇𝐺𝐺(𝑥𝑥)
2 +  𝜇𝜇𝑦𝑦2 +  𝑐𝑐1�(𝜎𝜎𝐺𝐺(𝑥𝑥)

2 +  𝜎𝜎𝑦𝑦2 +  𝑐𝑐2)
 (12) 

 
Finally, difference maps are calculated by comparing individual pixels between a 

generated image and a real image to evaluate their discrepancies. This process is described 
by (13), where each pixel in the images is analyzed, and the difference in intensity between 
corresponding pixels in the two images is estimated. Each pixel’s value represents its 
intensity, and pixel comparison involves subtracting the value of the corresponding pixel in 
one image from the value of the same pixel in the other image. This comparison is used to 
quantify and visualize the differences between the generated and real images. 

 
𝐷𝐷𝐷𝐷 = ||𝑦𝑦(𝑖𝑖,𝑗𝑗) − 𝐺𝐺(𝑥𝑥)(𝑖𝑖,𝑗𝑗)||  (13) 

 
 
4. RESULTS AND DISCUSSION 

 
4.1 Experimental setup 

 
The results presented in this study were obtained using the experimental setup detailed 

in Table 1. This table outlines the hyperparameters employed for each model, which were 
adjusted according to the available computational resources. The experiments were 
conducted on a workstation equipped with an Intel Xeon Silver 4108 CPU and an NVIDIA 
Quadro P2000 GPU with 4 GB of RAM. Python version 3.8 was used as the programming 
language, along with PyTorch version 2.0. 

 
4.2 Database 

 
A proprietary, retrospective, and anonymized database of DCE-MRI studies from 197 

patients was used to train the models. Each study includes T1- and T2-weighted structural 
images, Diffusion Weighted images (DWIs), and six DCE images. This study focused on the 
T1 fat-saturated sequence acquired before contrast agent administration 𝑥𝑥 and the 
corresponding image acquired in the early stage after contrast agent administration 𝑦𝑦. 

 Given the retrospective nature of the database, studies were selected based on their use 
of different types of 1.5 T resonators and gadolinium-based contrast agents, with doses 
ranging between 0.014 and 0.016 ml/mol. All studies contained at least one abnormality 
(either benign or malignant) annotated by expert radiologists using the BI-RADS system. 
This selection process ensured a balanced representation of both benign and malignant cases.  
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Table 1. Hyperparameters employed in the experiments. Source: Own work. 

Model Batch 
size 

Number of 
epochs Optimizer Learning 

rate 𝜆𝜆𝐿𝐿1 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝑜𝑜𝑜𝑜 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙á𝑠𝑠𝑠𝑠 Activation 
output 

RiedNet 4 100 Adam 0.0002 N/A - Linear 
Pix2Pix 1 100 Adam 0.0002 100 - TanH 
gEa-GAN 1 100 Adam 0.0002 300 300 Sigmoide 
dEa-GAN 1 100 Adam 0.0002 300 300 Sigmoide 
RiedGAN 4 100 Adam 0.0002 100 - TanH 
gEa-RiedGAN 1 100 Adam 0.0002 100 300 TanH 
dEa-RiedGAN 1 100 Adam 0.0002 100 300 TanH 
G-RiedGAN 1 100 Adam 0.0002 100 150 TanH 
D-RiedGAN 1 100 Adam 0.0002 100 150 TanH 

 
To focus on synthesizing contrast regions, only images with annotated contrast regions 

were included to ensure accurate depiction of contrast uptake. As a result, a total of 937 
normalized images, scaled to the range from -1 to 1, were processed. Of these, 718 images 
were allocated for training and 219 for validation. The original images, with resolutions 
ranging between 480x480 and 512x512 pixels, were resized to 240x240 pixels for consistency 
purposes. 

 
4.3 Comparative evaluation 
 

Figure 2 presents a comparison of the PSNR, SSIM, and MAE metrics for the models assessed 
on the validation image set. As observed, the G-RiedGAN and D-RiedGAN models proposed in 
this study outperformed the other models. This suggests that incorporating contrast-enhanced 
regions into the image synthesis process using the CeR-Loss function significantly enhances the 
quality of the synthetic images, as reflected by the values of these quantitative metrics. 

 

 
Figure 2. Scatter plot comparing PSNR, SSIM, and MAE across the baseline, mixed, and proposed models. 

Source: Own work. 
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Although G-RiedGAN and D-RiedGAN showed a slightly higher MAE compared to 
RiedGAN, the increase in MAE for D-RiedGAN was minimal and is outweighed by 
substantial improvements in PSNR and SSIM. This indicates that while RiedGAN 
demonstrated slightly better accuracy in individual pixel errors, it tends to produce more 
blurred images of internal structures, making it less suitable for medical image synthesis. 

In comparison to Pix2Pix [31]—a model frequently used in similar studies—both G-
RiedGAN and D-RiedGAN exhibited superior performance in terms of PSNR and SSIM. They 
excelled particularly in synthesizing contrast-enhanced regions and reducing noise, thus 
addressing some of the limitations of Pix2Pix in dense breast imaging. 

Figure 3, for its part, displays real post-contrast images generated from their non-contrast 
counterparts. Overall, the models effectively reproduced larger anatomical structures, 
though some discrepancies were observed in the intensities of rib cage structures. Despite 
this, G-RiedGAN and D-RiedGAN showed superior synthesis of contrast-enhanced regions 
compared to reference models such as RiedNet [29], Pix2Pix [31], and EaGAN [32]. These 
reference models, which served as the foundation for G-RiedGAN and D-RiedGAN, were 
employed for comparative analysis with the same methodology. While effective in their 
respective contexts, this study specifically evaluated their performance with medical images. 

 

 
Figure 3. Results of the comparative analysis between the evaluated models. The zoomed regions highlight 

projections where the contrast agent was captured. Source: Own work. 
 
Based on the results, G-RiedGAN and D-RiedGAN combine the strengths of existing 

models to achieve more precise and higher-quality image synthesis, particularly in contrast-
enhanced regions. They also performed well when compared to models reported in the 
literature, notably in minimizing noise and blur. This is further illustrated in Figure 4, which 
shows the difference maps of the synthetic and real images. As can be seen, the difference 
maps for G-RiedGAN and D-RiedGAN reveal fewer discrepancies between the synthetic and 
real images. 
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Figure 4. Difference maps between the real images and those generated by the evaluated models.  

Source: Own work. 
 
4.4 Impact of the contrast-enhanced regions’ cost function (CeR-Loss) 

 
The proposed cost function, CeR-Loss, is a critical component of the D-RiedGAN 

architecture, significantly enhancing its performance when compared to other models. To 
evaluate the impact of this function on model training, a series of experiments were 
conducted using the D-RiedGAN architecture (described in the previous section) but with 
variations in parameters 𝜆𝜆𝑙𝑙1 and 𝜆𝜆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. In these experiments, 𝜆𝜆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 was consistently set 
higher than 𝜆𝜆𝑙𝑙1 across all configurations. 

Figure 5 illustrates the results for three different parameter settings: 𝜆𝜆𝑙𝑙1 = 20 and 
𝜆𝜆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 30; 𝜆𝜆𝑙𝑙1 = 40 and 𝜆𝜆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 60; and 𝜆𝜆𝑙𝑙1 = 100 and 𝜆𝜆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 150. As observed, both the 
MAE and PSNR metrics improved as the values of 𝜆𝜆𝑙𝑙1 and 𝜆𝜆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 increased, with the best 
performance achieved at 𝜆𝜆𝑙𝑙1 = 100 and 𝜆𝜆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 150. These results underscore the positive 
effect of the CeR-Loss cost function on the model’s overall performance. 

 
 

5. CONCLUSIONS 
 
This paper introduced CeR-Loss, a novel cost function designed to leverage contrast agent 

uptake for generating synthetic post-contrast images from pre-contrast images in DCE-MRI 
studies. This function is incorporated into two new deep learning architectures, G-RiedGAN 
and D-RiedGAN, which focus on contrast-enhanced regions to improve the synthesis of post-
contrast images. The primary goal of these architectures is to minimize dependence on 
contrast agents and reduce the costs associated with DCE-MRI studies for breast cancer 
screening. 
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Figure 5. Evaluation of the impact of the CeR-Loss function on the performance of the D-RiedGAN 

architecture. Source: own work. 
 

The proposed G-RiedGAN and D-RiedGAN models combine features from the RIED-Net 
and Pix2Pix architectures within the EaGAN framework. Notably, D-RiedGAN includes a 
filter for detecting contrast-enhanced regions, which are essential for accurately synthesizing 
DCE-MRI images in breast cancer detection and diagnosis. These identified contrast regions 
guide the network learning process through the Lovász and BCE loss functions, which are 
integrated into the loss function of the generator and the discriminator (CeR-Loss). 

Two approaches were used for comparative evaluation. The first approach compared the 
performance of the proposed models (with CeR-Loss) against models documented in the 
literature and a set of mixed models. The results, based on MAE, PSNR, and SSIM metrics, 
indicate that the proposed models more effectively synthesize contrast-enhanced regions, 
with reduced noise and blur. The second approach assessed the impact of the CeR-Loss 
function on the learning process, revealing that increasing the weight of CeR-Loss positively 
influences the synthesis of contrast regions, as reflected by the value of the same metrics. 

Although validation was limited to quantitative metrics based on pixel intensities of 
synthetic images, future studies should include qualitative assessments by expert 
radiologists to validate the diagnostic quality of these images. Additionally, future research 
should investigate the performance of the baseline and proposed models across 
heterogeneous image databases, considering variations in study quality (0.5 T, 1.5 T, 3 T, 
and 7 T), dosage, and contrast agents. Furthermore, incorporating synthetic post-contrast 
images could improve the training of breast cancer detection and classification models that 
use conventional MRI images, as these synthetic images might provide valuable 
supplementary information to enhance model performance. 
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