Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.55 no.2 Bogotá July/Dec. 2021 Epub May 31, 2022
https://doi.org/10.15446/recolma.v55n2.102677
ORIGINAL ARTICLES
Stability analysis of a fractional virotherapy model for cancer treatment
Análisis de estabilidad de un modelo fraccionario para el tratamiento de cáncer
1Instituto Federal de São Paulo, Araraquara, Brazil
2Universidade Estadual Paulista “Júlio de Mesquita Filho” , Botucatu, Brazil
This paper presents a stability analysis of a differential equations model related to the cancer treatment with an oncolytic virus in its classical and fractional version via Caputo derivatives. Numerical simulations of three possible scenarios are presented and support the discussions on the advantages of using fractional modeling.
Keywords: Fractional Modeling; Fractional Differential Equation; Oncolitic Virus
Este artículo presenta un análisis de estabilidad de un modelo de ecuaciones diferenciales ordinarias para el tratamiento de cáncer usando virus oncológicos siendo consideradas las versiones clásica y fraccionaria. Usando diferentes valores para el orden de la derivada fraccionaria de Caputo, se presentan y discuten tres escenarios para tal tratamiento.
Palabras clave: Modelación fraccionaria; Ecuación diferencial Fraccionaria; Virus Oncológico
REFERENCES
1. N. Ahmed, N. A. Shah, S. Taherifar, and F. D. Zaman, Memory effects and of the killing rate on the tumor cells concentration for a one-dimensional cancer model, Chaos Soliton. Fract. 144 (2021), 110750. [ Links ]
2. R. Almeida, Analysis of a fractional SEIR model with treatment, Appl. Math. Lett. 84 (2018), 56-62. [ Links ]
3. A. Arafa, I. Hanafy, and M. Gouda, Stability analysis of fractional order hiv infection of CD4+ T cells with numerical solutions, Fract. Calc. Appl. Anal. 7 (2016), no. 1, 36-45. [ Links ]
4. Y. Bai, P. Hui, X. Du, and X. Su, Updates to the antitumor mechanism of oncolytic virus, Theor. Cancer 10 (2019), no. 5, 1031-1035. [ Links ]
5. L. C. Cardoso, F. L. P. Santos, and R. F. Camargo, Analysis of fractional-order models for hepatitis B, Comput. Appl. Math. 37 (2018), no. 4, 4570-4586. [ Links ]
6. A. C. Chamgoué, G. S. M. Ngueuteu, R. Yamapi, and P. Woafo, Memory effect in a self-sustained birhythmic biological system, Chaos Soliton. Fract. 109 (2018), 160-169. [ Links ]
7. E. Costanzi-Strauss and B. E. Strauss, Perspectives of gene therapy, Rev. Med. 94 (2015), no. 4, 211-222. [ Links ]
8. L. Edelstein-Keshet , Mathematical models in biology, SIAM, 2004. [ Links ]
9. I. R. Eissa, Y. Naoe, I. Bustos-Villalobos, T. Ichinose, M. Tanaka, W. Zhiwen, N. Mukoyama, T. Morimoto, N. Miyajima, H. Hitoki, et al., Genomic signature of the natural oncolytic herpes simplex virus HF10 and its therapeutic role in preclinical and clinical trials, Front. Oncol. 7 (2017), 149. [ Links ]
10. A. M. Elaiw and A. D. Al Agha, Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response, Nonlinear Anal. Real World Appl. 55 (2020), 103116. [ Links ]
11. M. F. Farayola, S. S. Shafie, F. M. Siam, and I. Khan, Mathematical modeling of radiotherapy cancer treatment using Caputo fractional derivative, Comput. Meth. Prog. Bio. 188 (2020), 105306. [ Links ]
12. A. Friedman and X. Lai, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: a mathematical model, PloS One 13 (2018), no. 2. [ Links ]
13. H. Fukuhara, Y. Ino, and T. Todo, Oncolytic virus therapy: a new era of cancer treatment at dawn, Cancer Sci. 107 (2016), no. 10, 1373-1379. [ Links ]
14. R. A. Gatenby and T. L. Vincent, Application of quantitative models from population biology and evolutionary game theory to tumor therapeutic strategies, Mol. Cancer Ther. 2 (2003), no. 9, 919-927. [ Links ]
15. B. Ghanbari, S. Kumar, and R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Soliton. Fract. 133 (2020), 109619. [ Links ]
16. J. F. Gómes-Aguilar, H. Yépes-Martínez, C. Calderón- Ramón, I. Cruz-Orduña, R. F. Escobar-Jiménez, and V. H. Olivares-Peregrino, Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel, Entropy 17 (2015), no. 9, 1099-4300. [ Links ]
17. J. P. W. Heidbuechel, D. Abate-Daga, C. E. Engeland, and H. Enderling, Mathematical modeling of oncolytic virotherapy, Springer, 2020. [ Links ]
18. A. L. Jenner, A. C. F. Coster, P. S. Kim, and F. Frascoli, Treating cancerous cells with viruses: insights from a minimal model for oncolytic virotherapy, Lett. Biomath. 5 (2018), no. sup1, S117-S136. [ Links ]
19. A. L. Jenner, C. O. Yun, P. S. Kim, and A. C. F. Coster, Mathematical modelling of the interaction between cancer cells and an oncolytic virus: insights into the effects of treatment protocols, Bull. Math. Biol. 80 (2018), no. 6, 1615-1629. [ Links ]
20. C. Kaid, E. Goulart, L. C. Caires-Júnior, B. H. S. Araujo, A. Soares-Schanoski, H. M. S. Bueno, K. A. T. Silva, R. M. Astray, A. F. Assoni, A. F. Ribeiro Junior, D. C. Ventini, A. L. P. Puglia, R. P. Gomes, M. Zatz, and O. K. Okamoto, Zika virus selectively kills aggressive human embryonal cns tumor cells in vitro and in vivo, Cancer Res. 78 (2018), no. 12, 3363-3374. [ Links ]
21. L. K. B. Kuroda, A. V. Gomes, R. Tavoni, P. F. A. Mancera, N. Varalta, and R. F. Camargo, Unexpected behavior of caputo fractional derivative, Comput. Appl. Math. 36 (2017), no. 3, 1173-1183. [ Links ]
22. Y. Luo, C. Lin, W. Ren, F. Ju, Z. Xu, H. Liu, Z. Yu, J. Chen, J. Zhang, P. Liu, et al., Intravenous injections of a rationally selected oncolytic herpes virus as a potent virotherapy for hepatocellular carcinoma, Mol. Ther.-Onco. 15 (2019), 153-165. [ Links ]
23. K. J. Mahasa, A. Eladdadi, L. De Pillis, and R. Ouifki, Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. a mathematical modelling approach, PloS One 12 (2017), no. 9. [ Links ]
24. D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl. 2 (1996), 963-968. [ Links ]
25. O. O. Mizrak, C. Mizrak, A. Kashkynbayev, and Y. Kuang, Can fractional differentiation improve stability results and data fitting ability of a prostate cancer model under intermittent androgen suppression therapy?, Chaos Soliton. Fract. 131 (2020), 109529. [ Links ]
26. M. K. Nono, E. B. M. Ngouonkadi, S. Bowong, and H. B. Fotsin, Hopf and backward bifurcations induced by immune effectors in a cancer oncolytic virotherapy dynamics, Int. J. Dyn. Control. (2020), 1-22. [ Links ]
27. A. Nouni, K. Hattaf, and N. Yousfi, Dynamics of a mathematical model for cancer therapy with oncolytic viruses, Commun. Math. Biol. Neurosci. 2019 (2019), Article-ID. [ Links ]
28. M. D. Ortigueira and J. A. Machado, What is a fractional derivative?, J. Comput. Phys. 293 (2015), 4-13. [ Links ]
29. V. O. Pimentel, N. H. Rekers, A. Yaromina, N. G. Lieuwes, R. Biemans, C. M. L. Zegers, W. T. V. Germeraad, E. J. Van Limbergen, D. Neri, L. J. Dubois, and P. Lambin, OC-0051: Radiotherapy causes long-lasting antitumor immunological memory when combined with immunotherapy, Radiother. Oncol. 127 (2018), S22. [ Links ]
30. D. G. Prakasha, N. S. Malagi, and P. Veeresha, New approach for fractional schrödinger-boussinesq equations with mittag-leffler kernel, Math. Method. Appl. Sci. 43 (2020), no. 17, 9654-9670. [ Links ]
31. D. G. Prakasha and P. Veeresha, Analysis of lakes pollution model with mittag-leffler kernel, J. Ocean. Eng. Sci. 5 (2020), no. 4, 310-322. [ Links ]
32. S. Qureshi, Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system, Chaos Soliton Fract. 134 (2020), 109744. [ Links ]
33. R. Scherer, S. L. Kalla, Y. Tang, and J. Huang, The Grünwald-Letnikov method for fractional differential equations, Comput. Math. Appl. 62 (2011), no. 3, 902-917. [ Links ]
34. L. W. Seymour and K. D. Fisher, Oncolytic viruses: finally delivering, Brit. J. Cancer 114 (2016), no. 4, 357-361. [ Links ]
35. J. G. Silva, A. C. O. Ribeiro, R. F. Camargo, P. F. A. Mancera, and F. L. P. Santos, Stability analysis and numerical simulations via fractional calculus for tumor dormancy models, Commun. Nonlin. Sci. Numer. Simul. 72 (2019), 528-543. [ Links ]
36. P. Sopasakis, H. Sarimveis, P. Macheras, and A. Dokoumetzidis, Fractional calculus in pharmacokinetics, J. Pharmacokinet. Phar. 45 (2018), no. 1, 107-125. [ Links ]
37. M. H. Tavassoli, A. Tavassoli, and M. R. O. Rahimi, The geometric and physical interpretation of fractional order derivatives of polynomial functions, Differ. Geom.-Dyn. Syst. 15 (2013), 93-104. [ Links ]
38. E. Ucar, N. Özdemir, and E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom. 14 (2019), no. 3, 308. [ Links ]
39. N. Varalta, A. V. Gomes, and R. F. Camargo, A prelude to the fractional calculus applied to tumor dynamic, TEMA 15 (2014), no. 2, 211-221. [ Links ]
40. P. Veeresha and D. G. Prakasha, A reliable analytical technique for fractional Caudrey-Dodd-gibbon equation with Mittag-Leffler kernel, Nonlinear Eng. 9 (2020), no. 1, 319-328. [ Links ]
41. P. Veeresha and D. G. Prakasha, Solution for fractional generalized Zakharov equations with Mittag-Leffler function, Results Eng. 5 (2020), 100085. [ Links ]
42. P. Veeresha, D. G. Prakasha, and H. M. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos 29 (2019), no. 1, 013119. [ Links ]
43. P. Veeresha, D. G. Prakasha, and J. Singh, Solution for fractional forced Kdv equation using fractional natural decomposition method, AIMS Math. 5 (2019), no. 2, 798-810. [ Links ]
44. Y. Wang, G. Gao, X. Li, and Z. Chen, A fractional-order model-based state estimation approach for lithium-ion battery and ultra-capacitor hybrid power source system considering load trajectory, J. Power Sources 449 (2020), 227543. [ Links ]
45. D. Wodarz, Gene therapy for killing P53-negative cancer cells: use of replicating versus nonreplicating agents, Hum. Gene Ther. 14 (2003), no. 2, 153-159. [ Links ]
46. D. Wodarz, Computational modeling approaches to studying the dynamics of oncolytic viruses, Math. Biosci. Eng. 10 (2013), no. 3, 939-957. [ Links ]
47. D. Wodarz and N. L. Komarova, Dynamics of cancer: mathematical foundations of oncology, World Scientific, Irvine, 2014. [ Links ]
48. X. J. Yang and J. A. Tenreiro Machado, A new insight into complexity from the local fractional calculus view point: modelling growths of populations, Math. Method. Appl. Sci. 40 (2015), no. 17, 6070-6075. [ Links ]
49. W. W. Yao, E. Ilhan, P. Veeresha, and H. M. Baskonus, A powerful iterative approach for quintic complex Ginzburg-Landau equation within the frame of fractional operator, Fractals (2021), 2140023. [ Links ]
50. M. Zheng, J. Huang, A. Tong, and H. Yang, Oncolytic viruses for cancer therapy: barriers and recent advances, Mol. Ther. Oncolytics 15 (2019), 234-247. [ Links ]
51. Z. Zhu, M. J. Gorman, L. D. McKenzie, D. Lisa, J. N. Chai, C. G. Hubert, B. C. Prager, E. Fernandez, J. M. Richner, R. Zhang, C. Shan, E. Tycksen, X. Tycksen, P. Y Shi, M. S. Diamond, J. N. Rich, and M. G. Chheda, Zika virus has oncolytic activity against glioblastoma stem cells, J. Exp. Med. 214 (2017), no. 10, 2843-2857. [ Links ]
Received: October 17, 2020; Accepted: October 16, 2021