Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Rev.Colomb.Estad. vol.37 no.2 Bogotá July/Dec. 2014
https://doi.org/10.15446/rce.v37n2spe.47949
http://dx.doi.org/10.15446/rce.v37n2spe.47949
1Utah State University, Department of Mathematics and Statistics, Logan, Utah, USA. Professor. Email: symanzik@math.usu.edu
2Utah State University, Department of Mathematics and Statistics, Logan, Utah, USA. PhD Student. Email: xiaotian.dai@aggiemail.usu.edu
3U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Office of Research and Development, Corvallis, Oregon, USA. Geographer. Email: Weber.Marc@epa.gov
4Oregon State University, Department of Statistics, Corvallis, Oregon, USA. PhD Student. Email: paytonq@science.oregonstate.edu
5U.S. Environmental Protection Agency, National Center for Environmental Assessment, Office of Research and Development, Cincinnati, Ohio, USA. Ecologist. Email: McManus.Michael@epa.gov
Linked micromap (LM) plots have been in use in the United States of America (USA) since their introduction in 1996 as an effective way to display statistical summaries associated with regional spatial units. However, LM plots were always hard to create by non--experts. The introduction of the R package has simplified the construction of LM plots for arbitrary geographic regions by facilitating the use of external Geographic Information System (GIS) features (such as shapefiles) as the basis for the maps. In this article, we will introduce LM plots for countries from South America. However, spatial representations of features are often not immediately suitable for LM plots, even after some automated simplification of the boundaries of the map regions. A common problem is that relatively small geographic regions are often not visible when plotted in LM plots. Thus, it is necessary to enlarge small regions and display them on the outside of the main map. We introduce some algorithmic guidelines on how small regions can be addressed in LM plots for South America. Moreover, we will provide recommendations how to include areas into LM plots that are far away from the main geographic region.
Key words: Geographic Data, LM Plots, Map Visualization, R, Statistical Maps, Visualization Software.
Las gráficas de micromapas enlazados (LM por sus siglas en inglés) han sido usados en Estados Unidos desde su introducción en 1996 como una forma efectiva de presentar resúmenes estadísticos asociados con unidades espaciales regionales. Sin embargo, las gráficas LM son difíciles de crear por no expertos. La introducción al paquete R micromap ha simplificado la contrucción de gráficos LM para regiones geográficas arbitrarias al facilitar el uso de Sistemas de Información Geográficos (GIS por sus siglas en inglés) como la base para los mapas. En este artículo, se presentan gráficos LM para los países de Suramérica. Sin embargo, las representaciones espaciales están a menudo no disponibles para los gráficos LM, incluso después de simplificaciones automatizadas de los límites de las regiones. Un problema comón es que regiones geográficamente pequeñas a menuso no son visibles en los gráficos LM. Entonces, se hace necesario ampliar estas regiones pequeñas y mostrarlas por fuera del mapa principal. Se introducen algunas guías algoritmicas de cómo considerar regiones pequeñas en los gráficos LM de Suramérica. Adicionalmente, se dan recomendaciones de cómo incluir áreas que se encuentran lejanas de la principal región geográfica en los graficos LM.
Palabras clave: datos geográficos, gráficos LM, mapas estadísticos, R, Software de visualización, visualización de mapas.
Texto completo disponible en PDF
References
1. Ahn, J. Y. (2013), Visualizing Statistical Information using Korean Linked Micromap Plots, 'Proceedings of IASC-Satellite Conference for the 59th ISI WSC & The 8th Conference of IASC-ARS', Asian Regional Section of the IASC, p. 219-221. [ Links ]
2. Bivand, R. S. & Lewin--Koh, N. (2014), maptools: Tools for Reading and Handling Spatial Objects. R package version 0.8-29. *http://CRAN.R-project.org/packagemaptools [ Links ]
3. Bivand, R. S. & Rundel, C. (2014), rgeos: Interface to Geometry Engine - Open Source (GEOS). R package version 0.3-4. *http://CRAN.R-project.org/packagergeos [ Links ]
4. Bonnal, L., Favard, P., Laurent, T. & Ruiz--Gazen, A. (2011), 'Pourquoi le cout de l'éducation est-il plus élevé en zone rurale? Le cas de la région Midi-Pyrénées', Revue d'Economie Régionale & Urbaine 2011/5, 887-910. [ Links ]
5. Brunsdon, C. & Chen, H. (2014), GISTools: Some further GIS Capabilities for R. R package version 0.7-2. *http://CRAN.R-project.org/packageGISTools [ Links ]
6. Carr, D. B., Bell, B. S., Pickle, L. W., Zhang, Y. & Li, Y. (2003), The State Cancer Profiles Web Site and Extensions of Linked Micromap Plots and Conditioned Choropleth Map Plots, 'Proceedings of the Third National Conference on Digital Government Research', Digital Government Research Center (DGRC), p. 269-273. *http://dl.acm.org/citation.cfm?id1123196 [ Links ]
7. Carr, D. B., Chen, J., Bell, B. S., Pickle, L. W. & Zhang, Y. (2002), Interactive Linked Micromap Plots and Dynamically Conditioned Choropleth Maps, 'Proceedings of the Second National Conference on Digital Government Research', Digital Government Research Center (DGRC), p. 61-67. *http://dl.acm.org/citation.cfm?id1123098 [ Links ]
8. Carr, D. B. & Pearson, J. B. (2014), micromapST: Linked Micromap Plots for U.S. States. R package version 1.0.3. *http://CRAN.R-project.org/packagemicromapST [ Links ]
9. Carr, D. B. & Pickle, L. W. (2010), Visualizing Data Patterns with Micromaps, Chapman & Hall/CRC, Boca Raton, FL. [ Links ]
10. Carr, D. B. & Pierson, S. M. (1996), 'Emphasizing statistical summaries and showing spatial context with micromaps', Statistical Computing and Statistical Graphics Newsletter 7(3), 16-23. [ Links ]
11. Douglas, D. H. & Peucker, T. K. (1973), 'Algorithms for the reduction of the number of points required to represent a digitized line or its caricature', The Canadian Cartographer 10(2), 112-122. [ Links ]
12. Gebreab, S. Y., Gillies, R. R., Munger, R. G. & Symanzik, J. (2008), 'Visualization and interpretation of birth defects data using linked micromap plots', Birth Defects Research (Part A): Clinical and Molecular Teratology 82, 110-119. [ Links ]
13. Hóhle, M., Meyer, S. & Paul, M. (2013), surveillance: Temporal and SpatioTemporal Modeling and Monitoring of Epidemic Phenomena. R package version 1.70. *http://CRAN.R-project.org/package=surveillance. [ Links ]
14. Han, K. S., Park, S. J., Mun, G. S., Choi, S. H., Symanzik, J., Gebreab, S. & Ahn, J. Y. (2014), 'Linked micromaps for the visualization of geographically referenced data', ICIC Express Letters 8(2), 443-448. [ Links ]
15. Harrower, M. & Bloch, M. (2006), 'MapShaper.org: A map generalization web service', IEEE Computer Graphics and Applications 26(4), 22-27. [ Links ]
16. Payton, Q. C., Weber, M. H., McManus, M. G. & Olsen, A. R. (2012), Linked Micromaps: Statistical Summaries in a Spatial Context, 'Water: One Resource - Shared Effort - Common Future, 8th National Monitoring Conference, April 30-May 4, 2012, Portland, Oregon', National Water Quality Monitoring Council. [ Links ]
17. Pickle, L. W., Pearson, J. & Carr, D. B. (2014), 'MicromapST: Exploring and communicating geospatial patterns in U.S. State data', Journal of Statistical Software, Under Review 15(11). *http://www.jstatsoft.org/v07/i11/ [ Links ]
18. X. Wang, J. X. Chen, D. B. Carr, B. S. Bell, & L. W. Pickle, (2002), 'Geographic statistics visualization: Web-based linked micromap plots', Computing in Science & Engineering 4(3), 90-94. [ Links ]
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv37n2a11,
AUTHOR = {Symanzik, J{\"u}rgen and Dai, XiaoTian and Weber, Marc H. and Payton, Quinn and McManus, Michael G.},
TITLE = {{Linked Micromap Plots for South America -- General Design Considerations and Specific Adjustments}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2014},
volume = {37},
number = {2},
pages = {451-469}
}