SciELO - Scientific Electronic Library Online

 
vol.22 issue3Productive and reproductive performance and blood chemistry on grazing Brahman replacement heifers supplemented with fatty acids and proteinAnalysis of the inclusion of Cucurbita moschata on the productive parameters in broilers chicken author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Ciencia y Tecnología Agropecuaria

Print version ISSN 0122-8706On-line version ISSN 2500-5308

Cienc. Tecnol. Agropecuaria vol.22 no.3 Mosquera Sep./Dec. 2021  Epub Aug 31, 2021

https://doi.org/10.21930/rcta.vol22_num3_art:2100 

Aquaculture and fisheries

Technification-promoting policies and their effect on aquaculture productivity

Jeison Elí Sánchez Calle*  1 
http://orcid.org/0000-0001-8039-7682

Miguel Ángel Valles Coral2 
http://orcid.org/0000-0002-8806-2892

Pedro Antonio Gonzales Sánchez3 
http://orcid.org/0000-0001-8865-7469

1Universidad Peruana Unión (Filial-Tarapoto). San Martín

2Universidad Nacional de San Martín-Tarapoto. San Martín

3Universidad Nacional de San Martín-Tarapoto. San Martín


Abstract

Continental aquaculture in Peru is gaining exposure as a propitious sector to implement production strategies and achieve technification since its production is based on few species and some regions. This literature review paper aims to present successful technification policies adopted by various developed countries and their impact on aquaculture productivity, compared to Latin American and Peruvian policies. We reviewed scientific articles published in the Scopus, Scielo, Directory of Open Access Journals (DOAJ), ScienceDirect, Latindex, and Google Scholar databases, as well as reports from the National Program for Innovation in Fisheries and Aquaculture (PNIPA) of Peru and the Ministry of Production (PRODUCE), using Mendeley reference manager. A total of 50 articles were selected based on relevance, impact level, and date of publication in the last five years. The countries that have technified their aquaculture processes have managed to position themselves as world benchmarks with high efficiency, productivity, and competitiveness levels. In conclusion, strategies, policies, technological development, and innovation must be promoted to improve and add value to the production chain and thus ensure aquaculture success.

Keywords aquaculture; automation; economic and social development; productivity; technological change

Resumen

La acuicultura en el Perú a nivel continental se proyecta como el sector propicio para desarrollar estrategias productivas y lograr la tecnificación, dado que su producción está basada en pocas especies y en algunas regiones. En ese sentido, el propósito del artículo de revisión bibliográfica es dar a conocer políticas exitosas de la tecnificación aplicadas en diversos países desarrollados y su impacto en la productividad acuícola, relacionado con las políticas de Latinoamérica y del Perú. Se revisaron artículos científicos publicados en las bases de datos Scopus, Scielo, Directory of Open Access Journals (DOAJ), ScienceDirect, Latindex, Google académico, así como reportes del Programa Nacional de Innovación en Pesca y Acuicultura (PNIPA) Perú y Ministerio de la producción (PRODUCE), utilizando el gestor de búsqueda de referencias Mendeley. Se seleccionaron 50 artículos basados en los criterios de relación con el tema, nivel de impacto y año de publicación en los últimos cinco años. Se encontró que los países que han tecnificado sus procesos acuícolas han logrado posicionarse como referentes mundiales con altos niveles de eficiencia, productividad y competitividad. Se concluye que, para asegurar el éxito acuícola, se deben promover estrategias, políticas, el desarrollo tecnológico y la innovación para lograr mejorar y dar valor a la cadena productiva.

Palabras clave acuicultura; automatización; cambio tecnológico; desarrollo económico y social; productividad

Introduction

Aquaculture has become an option to meet future nutritional demands. Currently, 54 % of fish and shellfish come from this activity, with a tendency to increase significantly (Delgado Ramírez & Soto Aguirre, 2018). Thus, fish production plays a fundamental role in communities’ food autonomy and economic sustainability (Rojas-Molina et al., 2017). For example, Torres-Barrera and Grandas-Rincón (2017) stated that some regions of Colombia have been historically engaged in traditional fish production and their activities revolve around it. Crispín-Sánchez et al. (2019) highlighted the importance of incorporating technological resources to make the most of natural resources, be environmentally sustainable and productive, and achieve market competitiveness.

Aquaculture growth faces significant challenges. Wasted water resources and the demand-production imbalance require adopting effective policies in this sector (Bonilla-Castillo et al., 2018). Therefore, it is urgent to introduce technology policies as a key factor to achieve competitiveness and business development (Martínez-Yáñez et al., 2018).

National governments play a fundamental role in implementing aquaculture sector policy; however, organizations lack the capacity to participate, define, and propose initiatives that can be considered within public policies, in addition to the nonexistence of participation bodies for fish farmers (Pereira-Gutiérrez et al., 2017). This incoordination between state entities and the aquaculture community makes the absence of policies for the sector’s sustainable development more noticeable (Marcelino-Aranda et al., 2017). At present, Asian countries dominate the global aquaculture production with growth of 2.6 million tons per year. Of the nine countries considered leaders in aquaculture, China is the largest producer and exporter of tilapia with more than 1,000 t/year (Carpio & Tito, 2017); the diverse technology implemented in the processes included in its aquaculture policies have turned this country into a world power (Hernández-Barraza et al., 2016).

In Latin America, Mexico is a pioneer in aquaculture innovation, as the implementation of environmental policies, planning tools, ongoing support and monitoring have increased its production efficiency (Jiménez-Sánchez et al., 2019). Thus, aquaculture production has risen steadily and progressively, representing more than 60 % of the country’s total production (Hernández-Barraza et al., 2016). Similarly, the national governments of Brazil, Chile, and Colombia have invested in aquaculture projects since they consider it a relevant activity for the national economy (García-Ramos et al., 2016).

Peru, in the twelfth place in world aquaculture production with 155,000 t/year, has grown rapidly in the last decade (Carpio & Tito, 2017), focusing on two farming systems: traditional environments and artificial ponds (Arqueros et al., 2017). Nationwide, it is estimated that there are around 12,000 lentic resources in high Andean areas, of which 600 have been deemed suitable by the Regional Production Directorate to carry out aquaculture activities (Carpio & Tito, 2017). While the government regulates and runs plans to promote its sustainable development and communities’ income generation (Aramayo, 2016), the marketing of species is limited in most of the country’s regions; consequently, they are unable to achieve production levels due to low demand (Chichizola et al., 2016).

This paper aims to identify technification-promoting policies adopted by various developed countries and their impact on aquaculture productivity. For this, we reviewed a series of original articles published in countries whose aquaculture sector competitiveness has made them world benchmarks, with high efficiency and productivity levels. We also intend to provide the entire production community involved in aquaculture with useful information that contributes to optimizing its processes and market competitiveness.

Materials and methods

For the literature review, we combined Boolean operators and stored articles from high impact journals in Scopus, Scielo, Directory of Open Access Journals (DOAJ), ScienceDirect, Latindex, and Google Scholar, as well as reports from the National Program for Innovation in Fisheries and Aquaculture (PNIPA) of Peru and the Ministry of Production (PRODUCE). We used the Mendeley reference manager, selecting 50 articles based on relevance, impact level, and date of publication in the last five years.

Results and discussion

The search results were arranged in order of success of the technification policies followed by various developed countries, with no link to their weighting.

Technology policies and tools in world aquaculture

Innovation and technological advances are essential factors for business development and competitiveness (Zamora-Torres & González-García, 2018); therefore, companies look for tools that allow them to survive in an increasingly competitive world (Del Carpio- Gallegos & Miralles, 2019).

Asian countries are global benchmarks for their productivity and incorporation of technology in their processes (Torres-Barrera & Grandas-Rincón, 2017). Research carried out in China indicates that agriculture is the main cause of pollution, releasing 57 % of nitrogen and 69 % of phosphorus into the water (Rojas & Salazar, 2018). Ribeiro et al. (2019) reported that the government implemented the strategy called circular economy, referring to comprehensive input usage and waste reduction. Integrated aquaculture and polyculture are incorporated in this context, making fish farmers migrate to new strategies such as recirculating aquaculture systems (RAS), aquaponics, and bioflocs (Castillo & Espitia, 2020). As a result of technology adoption and public policy support, the country has positioned itself as the world’s leading producer of aquaculture species for decades (Porras-Rivera & Rodriguez-Pulido, 2019).

The United States is no stranger to the technification of aquaculture processes (Morán-Silva et al., 2017). The National Oceanic and Atmospheric Administration (NOAA) promotes science and technology tool management and transfer for aquaculturists to meet the growing demand for seafood and restore fishery resources (Dowbor et al., 2018). Beltrán (2017) asserted that Global Blue Technologies, an innovative super-intensive shrimp hatchery based in Texas, has a three-fold objective: to take care of the planet, people, and the company. It has also run a project called Zero Discharge to the environment, which is about reusing industrial wastewater. This application of technology has produced impressively large shrimp in an environmentally responsible manner since 2015.

In Spain, as Varela-Mejías (2018) indicated, the government emphasizes R&D (research and development) investments to develop and transfer technology. Since 1986, with the creation of the Science Act (Scientific and Technical Research Promotion and Coordination Act) and the government’s participation in the first National Plan for Scientific Research and Technological Development, this country has strengthened ties and signed agreements with the private sector to implement technology by acquiring specialized laboratories and establishing various sites for the aquaculture sector. As stated by Beltrán (2017), Spain’s objective is not to depend on the import of aquaculture species (seeds) and contribute to mitigating fish diseases.

Technology policies and tools in Latin American aquaculture

Gavito et al. (2017) pointed out that the Mexican government, through the National Aquaculture and Fisheries Commission (CONAPESCA), encourages micro-enterprises with developed and organized value chains to establish partnerships to improve market competitiveness. For this, it creates policies as an instrument related to innovation and technology transfer in the aquaculture sector (Díaz et al., 2017). Cisneros-Montemayor and Cisneros-Mata (2018) reported that the program called Revolución Verde [Green Revolution] increased the yield of aquaculture crops and exports in a short period through the massive application of technology packages (table 1).

Table 1. Goals and technology tools derived from the Revolución Verde program 

Source: Adapted from Gavito et al. (2017)

As a result, Mexico has recently attained a growth rate of 15 % per year, reaching historical figures of 337,000 tons of aquaculture production in 2016 (Cuéllar Lugo et al., 2018).

Because of its geographical and topographic location, Colombia has great potential for aquaculture, given its 25,000 million m3 of available water resources (Camero-Escoba & Calderón-Calderón, 2018). Hernandez et al. (2019) reported that the Colombian government prioritizes innovative technologies that follow aquaculture production development schemes: economic viability, environment sustainability, and social acceptability. Faced with this challenge, bioflocs arise as an alternative to mitigate the adverse environmental impacts caused by water discharges from aquaculture.

Reality of aquaculture in Peru

The fishing sector in Peru, globally recognized for the export of fishmeal (Crispín-Sánchez et al., 2019), has not been alien to aquaculture ventures. Since the beginning of the 21st century, it has achieved slight growth, still focused on few species and regions (Gonzales et al., 2019), as shown in figures 1 and 2.

Source: Adapted from Olaya (2020)

Figure 1. Growth of aquaculture in Peru from 2010 to 2018. 

Source: Adapted from Berger (2020)

Figure 2. Production by species and region in Peru (2018). 

Peru is one of the most biodiverse countries in the world, with potential for fishing, continental water resources, and a highly productive coastline (Aramayo, 2016). However, it has problems that adversely affect aquaculture development, expansion, and competitiveness (Adams & Flores, 2016); for example, aquaculture companies’ limited capacity for production, marketing, management, and organization with a focus on production chains (Zafra-Trelles et al., 2017) and the little information on the demand for aquaculture products nationally and internationally (Rodríguez-Félix et al., 2016).

Bonilla-Castillo et al. (2018) mentioned that in Peru the awarding of technology packages aimed at strengthening production chains and growing the aquaculture of species with market prospects is low; therefore, most fish farms use artisan means since they lack technological tools to automate their processes (Rodríguez-Cruz & Pinto, 2018).

The poor characterization of technological resources in aquaculture activities is another factor attributed to the inapplicability of technology to their processes (Zafra et al., 2018), specifically the traditional production of native species, where proper management is essential. The latter requires periodic monitoring, focusing on the control of physicochemical parameters of water, food, and disease control (Adams & Flores, 2016).

Various government agencies, including the PNIPA, foster the formalization, technification, and participatory work of small producers and communities; however, a large part of this sector opposes the adoption of these models and continues with extensive aquaculture (Marcelino-Aranda et al., 2017).

Alternatives to incorporate successful policies and improve Peruvian aquaculture

Peru is no stranger to aquaculture innovations; in recent decades, the government has sought to consolidate production and create new opportunities for sustainability, diversity, and market competitiveness (Aramayo, 2016). Continental aquaculture is emerging as a propitious sector to implement production strategies and achieve technification since its production is based on few species and some regions (Zender et al., 2016).

We prepared table 2 to carry out a systematic assessment. It compiles technification-promoting policies introduced by countries where aquaculture sector competitiveness has made them world benchmarks, with high efficiency and productivity levels. It was found that countries such as China and the United States, through their Circular Economy and Zero Discharge programs, incorporate aquaculture developmentrelated technology aimed at recycling water from industries (Vázquez-López, 2018).

Table 2. Countries promoting technification and technological intervention in the aquaculture sector 

Source: Elaborated by the authors

In the specific case of the Peruvian aquaculture sector, which lacks technology in its processes, especially on the coast, few companies use aquaponic farms, RAS, and bioflocs, according to Del Carpio-Gallegos and Miralles (2019). Saldaña-Carranza et al. (2015) reported that it merits the incorporation of technological resources, primarily on the coast of Peru, where the largest number of industrial companies are concentrated. It should be emphasized that the incorporation of these packages has allowed China and the United States to be efficient in their production and take responsibility for water resources.

Based on table 2, Spain, Mexico, and Colombia favor strategic partnerships with the private sector and R&D investments to adopt technological resources; these policies are adapted and constantly monitored in such a way that they have an expected result according to plan.

In Peru’s favorable conditions, such as the abundance of water resources and extensive coastline (Riquelme et al., 2017), it would be ideal to work with policies and strategies such as those implemented in Colombia since their realities and types of crops are similar (Liñan-Cabello et al., 2016). As reported by Reyes-Serna (2018), the set of proposals supported by a government must be efficient and tailored to the needs of fish farmers to accomplish their consolidation and improvement. Following the Colombian model and emphasizing policies such as those of Spain and Mexico, strategies in the aquaculture sector must be pursued in an orderly and continuous manner (Montoya-López et al., 2019).

Conclusions

From this review, we found that countries such as China, the United States, and Spain included technology in their aquaculture policies aimed at reusing industrial waters, which have positioned them as global benchmarks with high efficiency, productivity, and competitiveness levels. Regarding Latin American, Mexico and Colombia stand out due to their policies related to strategic partnerships with the private sector and R&D investments.

Undoubtedly, the policies implemented worldwide and in Latin America have been successful since they considered technology within their government strategies, which should be implemented in Peru to improve the aquaculture sector. The Peruvian government must replicate efficient policies that increase productivity and market competitiveness to ensure success.

Acknowledgments

We want to thank God and our families for their support during the completion of this work and the Universidad Peruana Unión for the contribution to our professional preparation.

References

Adams, G., & Flores, D. (2016). Influencia de El Niño Oscilación del Sur en la disponibilidad y abundancia de recursos hidrobiológicos de la pesca artesanal en Ica, Perú. Revista de Biologia Marina y Oceanografia, 51(2), 265-272. https://doi.org/10.4067/s0718-19572016000200005Links ]

Aramayo, V. (2016). Breve síntesis sobre el recurso bacalao de profundidad Dissostichus eleginoides en Perú. Revista de Biologia Marina y Oceanografia, 51(2), 229-239. https://doi.org/10.4067/s0718-19572016000200002Links ]

Arqueros, M., Sánchez-Tuesta, L., & Prieto, Z. (2017). Diferenciación genética de tilapia roja y gris (Oreochromis niloticus) mediante microsatélites y marcadores SCAR como indicadores del sexo genético. Revista Peruana de Biología, 24(3), 255-262. https://doi.org/10.15381/rpb.v24i3.13900Links ]

Beltrán, M. (2017). Innovación en el sector acuícola. Ra Ximhai, 13(3), 351-364. https://doi.org/10.35197/rx.13.03.2017.20.mbLinks ]

Berger, C. (2020). La acuicultura y sus oportunidades para lograr el desarrollo sostenible en el Perú. South Sustainability, 1, 1-11. https://doi.org/10.21142/ss-0101-2020-003Links ]

Bonilla-Castillo, C. A., Agudelo, E., Gómez, G., & Duponchelle, F. (2018). Population dynamics of Prochilodus nigricans (Characiformes: Prochilodontidae) in the Putumayo River. Neotropical Ichthyology, 16(2), 1-12. https://doi.org/10.1590/1982-0224-20170139Links ]

Camero-Escoba, G., & Calderón-Calderón, H. (2018). Vigilancia tecnológica e inteligencia competitiva para la producción de tilapia roja (Oreochromis mossambicus) en el departamento del Huila, Colombia. Revista de Investigación, Desarrollo e Innovación, 9(1), 19-31. https://doi.org/10.19053/20278306.v9.n1.2018.8504Links ]

Carpio, E., & Tito, E. (2017). Escalas productivas y nivel de riesgo del productor de trucha, puno-Perú. COMUNI@CCIÓN: Revista de Investigación en Comunicación y Desarrollo, 8(2), 81-93. https://www.comunicacionunap.com/index.php/rev/article/view/202Links ]

Castillo, R., & Espitia, J. (2020). Caracterización de zonas de riesgo por crecientes de ríos de bajo caudal, para la implementación de un sistema de alertas tempranas (SAT) con tecnología LoRa y LoRaWAN. Información Tecnológica, 31(2), 47-54. https://doi.org/10.4067/s0718-07642020000200047Links ]

Chichizola, V., Huatuco, E., & Quispe, J. (2016). Primer registro de Plesiomonas shigelloides como patógeno oportunista de Tilapia Oreochromis niloticus (Linnaeus, 1758) en una piscigranja de Lima, Perú. Revista de Investigaciones Veterinarias del Peru, 27(3), 565-572. https://doi.org/10.15381/rivep.v27i3.11996Links ]

Cisneros-Montemayor, A., & Cisneros-Mata, M. (2018). A medio siglo de manejo pesquero en el noroeste de México, el futuro de la pesca como sistema socioecológico. Relaciones. Estudios de Historia y Sociedad, 39(153), 99-127. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S018539292018000100099&lng=es&nrm=isoLinks ]

Crispín-Sánchez, F., Porturas, R., & Vásquez, W. (2019). Efecto de los ácidos orgánicos sobre la presencia de Salmonella spp. en harina de pescado. Agroindustrial Science, 9(2), 139-144. https://doi.org/10.17268/agroind.sci.2019.02.06Links ]

Cuéllar Lugo, M. B., Asiain Hoyos, A., Juárez Sánchez, J. P., Reta Mendiola, J. L., & Gallardo López, F. (2018). Evolución normativa e institucional de la Acuacultura en México. Agricultura Sociedad y Desarrollo, 15(4), 541-564. https://doi.org/10.22231/asyd.v15i4.906Links ]

Del Carpio-Gallegos, J., & Miralles, F. (2019). Análisis cualitativo de los determinantes de la innovación en una economía emergente. Retos, 9(17), 161-175. https://doi.org/10.17163/ret.n17.2019.10Links ]

Delgado Ramírez, C. E., & Soto Aguirre, E. (2018). Co-manejo pesquero e innovación social: el caso de la pesquería de erizo rojo (Strongylocentrotus franciscanus) en Baja California. Sociedad y Ambiente, 16, 91- 115. https://www.redalyc.org/journal/4557/455755944004/html/ [ Links ]

Díaz, R., García, A., & Concepción, M. (2017). ¿Estamos investigando la efectividad de las certificaciones ambientales para lograr la sustentabilidad acuícola? Sociedad y Ambiente, 15, 7-37. http://www.scielo.org.mx/pdf/sya/n15/2007-6576-sya-15-7.pdfLinks ]

Dowbor, L., Esteves-Rodrigues, A., & Panez-Pinto, A. (2018). Reapropiaciones de los bienes comunes: miradas críticas en torno a la gobernanza hídrica. Revista Rupturas, 8(2), 33-57. https://doi.org/10.22458/rr.v8i2.2112Links ]

García-Ramos, R., Díaz-Díaz, B., & Luna-Sotorrío, L. (2016). La utilidad de las opciones reales para valorar inversiones en el sector pesquero: Aplicación a la pesquería de merluza (Merluccius spp.). Agrociencia, 50(4), 533-549. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S1405-31952016000400533&lng=es&nrm=isoLinks ]

Gavito, M., van der Wal, H., Aldasoro, M., Ayala-Orozco, B., Bullén, A. A., Cach-Pérez, M., CasasFernández, A., Fuentes, A., González-Esquivel, C., Jaramillo-López, P., Martínez, P., MaseraCerruti, O., Pascual, F., Pérez-Salicrup, D. R., Robles, R., Ruiz-Mercado, I., & Villanueva, G. (2017). Ecología, tecnología e innovación para la sustentabilidad: retos y perspectivas en México. Revista Mexicana de Biodiversidad, 88, 150-160. https://doi.org/10.1016/j.rmb.2017.09.001Links ]

Gonzales, A., Curto, G., & Fernández-Mendez, C. (2019). Parámetros hematológicos de reproductores de Brycon amazonicus (Bryconidae) en cultivo. Revista de Investigaciones Veterinarias del Perú, 30(1), 133- 142. https://doi.org/10.15381/rivep.v30i1.14935Links ]

Hernández-Barraza, C. A., Trejo-Martínez, A. B., Loredo-Osti, J., & Gutiérrez-Salazar, G. (2016). Evaluación de la eficiencia productiva de tres líneas de tilapia con reversión sexual en un sistema de recirculación (RAS). Latin American Journal of Aquatic Research, 44(4), 869-874. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2016000400024Links ]

Hernandez, L., Londoño, J., Hernandez, A., & Torres, L. (2019). Los sistemas biofloc: una estrategia eficiente en la producción acuícola. CES Medicina Veterinaria y Zootecnia, 14(1), 70-99. https://doi.org/10.21615/cesmvz.14.1.6Links ]

Jiménez-Sánchez, A., Sánchez-Nava, P., Rodríguez-Romero, F., & Flores-Nava, B. (2019). Monogéneos de Astyanax aeneus (Characidae) y Oreochromis niloticus (Cichlidae) en la cuenca del río Ixtapan, México. Revista Mexicana de Biodiversidad, 90, 1-7. https://doi.org/10.22201/ib.20078706e.2019.90.2750Links ]

Liñan-Cabello, M., Quintanilla-Montoya, A., Sepúlveda-Quiroz, C., & Cervantes-Rosas, O. (2016). Susceptibilidad a la variabilidad ambiental del sector acuícola en el Estado de Colima, México: Caso de estudio. Latin American Journal of Aquatic Research, 44(3), 649-656. https://doi.org/10.3856/vol44-issue3-fulltext-24Links ]

Marcelino-Aranda, M., Sánchez-García, M. C., & Camacho, A. D. (2017). Bases teórico-prácticas de un modelo de desarrollo sustentable para comunidades rurales con actividades agropecuarias. Agricultura, Sociedad y Desarrollo, 14(1), 47-59. http://www.scielo.org.mx/pdf/asd/v14n1/1870-5472-asd-14-01-00047.pdfLinks ]

Martínez-Yáñez, A., Albertos-Alpuche, P., Guzman-Mendoza, R., Robaina-Robaina, L., AlvarezGonzalez, A., & Diaz-Plascencia, D. (2018). Production and chemical composition of hydrophytes cultivated in aquaponics. Ecosistemas y Recursos Agropecuarios, 5(14), 247-257. https://doi.org/10.19136/era.a5n14.1447Links ]

Montoya-López, A., Tarazona-Morales, A., Olivera-Angel, M., & Betancur-López, J. (2019). Genetic diversity of four broodstocks of tilapia (Oreochromis sp.) from antioquia, Colombia. Revista Colombiana de Ciencias Pecuarias, 32(3), 201-213. https://doi.org/10.17533/udea.rccp.v32n3a05Links ]

Morán-Silva, A., Chávez-López, R., Jiménez-Badillo, L., Cházaro-Olvera, S., Galindo-Cortes, G., & Meiners-Mandujano, C. (2017). Análisis de la comunidad de peces de descarte en la pesca de arrastre de camarón (temporada de lluvias 2013) en la zona centro-sur del litoral veracruzano, México. Revista de Biología Marina y Oceanografía, 52(3), 551-566. https://doi.org/10.4067/s0718-19572017000300012Links ]

Olaya, M. (2020). Las exportaciones pesqueras de Perú y Chile durante el periodo 2010 al 2018: Estudio comparativo. Anales Científicos, 81(1), 99-111. http://dx.doi.org/10.21704/ac.v81i1.1574Links ]

Pereira-Gutiérrez, M., Jáuregui-Romero, G., Devia-Barros, A., & Rojas-Ruiz, J. (2017). Cultivo de microalgas Isochrysis galbana y Nannochloropsis sp. para alimentación de larvas de peces marinos. Revista Mutis, 7(2), 81-85. https://doi.org/10.21789/22561498.1246Links ]

Porras-Rivera, G., & Rodriguez-Pulido, J. (2019). Comparación y caracterización morfométrica del híbrido (Pseudoplatystomametaense x Leiarius marmoratus) y sus parentales (Siluriformes : Pimelodidae). International Journal of Morphology, 37(4), 1409-1415. http://dx.doi.org/10.4067/S0717-95022019000401409Links ]

Reyes-Serna, L. (2018). Densidades idóneas para sistemas de policultivo de especies comerciales Tilapia Roja (Oreochromis spp.) y Carpa Roja (Ciprynus carpio) en sistemas de confinamiento artesanal en lagos artificiales en Santiago de Cali (Valle del Cauca, Colombia). Idesia (Arica), 36(1), 73-82. https://doi.org/10.4067/s0718-34292018000100073Links ]

Ribeiro, F., Braga, S., & Duncan, L. (2019). Princípios de economia circular para o desenvolvimento de produtos em arranjos produtivos locais. Interações (Campo Grande), 20(4), 1179-1193. https://doi.org/10.20435/inter.v20i4.1921Links ]

Riquelme, R., Olivares-Ferretti, P., Fonseca-Salamanca, F., & Parodi, J. (2017). Aguas profundas, un efecto en la temperatura para el manejo de Caligidosis en el Salmón del Atlántico (Salmo salar). Revista de Investigaciones Veterinarias del Perú, 28(1), 33-42. https://doi.org/10.15381/rivep.v28i1.12938Links ]

Rodríguez-Cruz, Y., & Pinto, M. (2018). Modelo de uso de información para la toma de decisiones estratégicas en organizaciones de información. Transinformacao, 30(1), 51-64. https://doi.org/10.1590/2318-08892018000100005Links ]

Rodríguez-Félix, D., Cisneros-Mata, M., Aragón-Noriega, E., & Arreola-Lizárraga, J. (2016). Influencia de la proporción sexual y del ambiente en la tasa de crecimiento poblacional de Callinectes bellicosus (Decapoda: Portunidae) del Golfo de California. Revista de Biología Tropical, 64(3), 1259-1271. https://doi.org/10.15517/rbt.v64i3.19969Links ]

Rojas-Molina, L. Y., Tique-Pinto, V. H., & Bocanegra-García, J. J. (2017). Uso de herramientas tecnológicas en la producción piscícola: Una revisión sistemática de literatura. Revista Ingeniería, Investigación y Desarrollo, 17(2), 47-56. https://doi.org/10.19053/1900771x.v17.n2.2017.7183Links ]

Rojas, I., & Salazar, V. (2018). La acuicultura frente a los impactos de la actividad agrícola en la calidad de los servicios ambientales de la cuenca del río mayo. Una propuesta para su abordaje desde la economía ecológica. Revista de Alimentación Contemporánea y Desarrollo Regional, 28(51), 1-26. https://doi.org/10.24836/es.v28i51.507Links ]

Saldaña-Carranza, A., Sánchez-Zamora, D., Vásquez-Villalovoz, V., Lescano-Bocanegra, L., & LinaresLuján, G. (2015). Diseño y montaje de un pasteurizador solar y evaluación en el tratamiento de leche de cabra. Agroindustrial Science, 5(2), 109-126. https://doi.org/10.17268/agroind.science.2015.02.03Links ]

Torres-Barrera, N., & Grandas-Rincón, I. (2017). Estimación de los desperdicios generados por la producción de trucha arcoíris en el lago de Tota, Colombia. Ciencia y Tecnologia Agropecuaria, 18(2), 247-255. https://doi.org/10.21930/rcta.vol18_num2_art:631Links ]

Varela-Mejías, A. (2018). Patologías del hepatopáncreas en camarones marinos cultivados en América y su diagnóstico diferencial mediante histopatología Introducción. Revista AquaTIC, 50, 13-30. http://www.revistaaquatic.com/ojs/index.php/aquatic/article/view/315Links ]

Vázquez-lópez, R. (2018). Cambio estructural y productividad laboral en la industria. Un análisis global. El Trimestre Económico, 85(338), 277-310. https://doi.org/10.20430/ete.v85i338.310Links ]

Zafra-Trelles, A., Diaz, M., Dávila, F., Bopp, G., Vela, K., Belén, L., Castillo, J., & Colchado, J. (2017). Cultivo de microalgas marinas potenciales para la acuicultura del litoral entre Puerto Salaverry y Puerto Chicama, La Libertad, Perú. Arnaldoa, 24(2), 567-582. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2413-32992017000200009Links ]

Zafra, A., Díaz, M., Dávila, F., Vela, K., & Colchado, J. (2018). Catálogo de peces ornamentales en Trujillo, La Libertad, Perú. Arnaldoa, 25(2), 757-786. http://www.scielo.org.pe/pdf/arnal/v25n2/a21v25n2.pdfLinks ]

Zamora-Torres, A., & González-García, J. (2018). Factores clave de la cadena logística del comercio exterior de un puerto mexicano: análisis a través de redes neuronales artificiales. Contaduría y Administración, 64(2), 1-19. https://doi.org/10.22201/fca.24488410e.2018.1494Links ]

Zender, J., Li, O., Suárez, F., Hoyos, L., Silva, W., Arroyo, G., & Barrios-Arpi, M. (2016). Perfil bioquímico sanguíneo hepático del Cocodrilo de Tumbes (Crocodylus acutus) criado en cautiverio. Revista de Investigaciones Veterinarias del Perú, 27(1), 24-30. https://doi.org/10.15381/rivep.v27i1.11443Links ]

Received: July 07, 2020; Accepted: March 15, 2021

* Universidad Peruana Unión (Filial-Tarapoto). San Martín, Peru. Jr. Los Mártires No. 340. jeisonsanchez@upeu.edu.pe

Disclaimers: The authors agree with the publication of this article and declare no conflicts of interest that affect the results of this study.

Creative Commons License Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.