Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Cited by Google
-
Similars in SciELO
-
Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.40 no.1 Bogotá Jan./June 2006
Fadwa S. Abu Muriefah
Mathematics Department Girls College Of Education P.O. Box 60561 Riyadh 11555, Saudi Arabia
e-mail: abumuriefah@yahoo.com
Yann Bugeaud
U. F. R. de mathématiques Université Louis Pasteur 7, rue René Descartes 67084 Strasbourg Cedex, France
e-mail: bugeaud@math.u-strasbg.fr
ABSTRACT. We give a survey on recent results on the Diophantine equation x2 + c = yn.
Key words and phrases. Diophantine equations, Baker's method.
2000 Mathematics Subject Classification. Primary: 11D61.
RESUMEN. Nosotros hacemos una revisión acerca de resultados recientes sobre la ecuación Diofántica x2 + c = yn.
Acknowledgements. We are pleased to thank the referee for his very careful reading of a first version of our text.
TEXTO COMPLETO EN PDF
[1] F. S. Abu Muriefah, On the Diophantine equation x2 + 52k = yn, Demo. Math. (To appear). [ Links ]
[2] F. S. Abu Muriefah & S. A. Arif, On a Diophantine equation, Bull. Austral. Math. Soc. 57 (1998), 189-198. [ Links ]
[3] F. S. Abu Muriefah & S. A. Arif, The Diophantine equation x2+52k+1 = yn, Indian J. Pure Appl. Math. 30 (1999), 229-231. [ Links ]
[4] F. S. Abu Muriefah & S. A. Arif, The Diophantine equation x2 + q2k = yn, Arab. J. Sci. Eng. Sect. A Sci. 26 (2001), 53-62. [ Links ]
[5] S. A. Arif & F. S. Abu Muriefah, On the Diophantine equation x2 + 2k = yn, Internat. J. Math. Math. Sci. 20 (1997), 299-304. [ Links ]
[6] S. A. Arif & F. S. Abu Muriefah, The Diophantine equation x2+3m = yn, Internat. J. Math. Math. Sci. 21 (1998), 619-620. [ Links ]
[7] S. A. Arif & F. S. Abu Muriefah, On the Diophantine equation x2 + 2k = yn. II,, Arab. J. Math. Sci. 7 (2001), 67-71. [ Links ]
[8] S. A. Arif & F. S. Abu Muriefah, On the Diophantine equation x2 + q2k+1 = yn, J. Number Theory 95 (2002), 95-100. [ Links ]
[9] M. A. Bennett & C. M. Skinner, Ternary Diophantine equations via Galois repre- sentations and modular forms, Canad. J. Math. 56 [1] (2004), 23-54. [ Links ]
[10] Yu. Bilu, On Le's & Bugeaud's papers about the equation ax2+b2m-1 = 4cp, Monatsh. Math. 137 (2002), 1-3. [ Links ]
[11] Yu. Bilu, G. Hanrot, & P. M. Voutier, with an appendix by M. Mignotte, Existence of primitive divisors of Lucas and Lehmer sequences, J. Reine Angew. Math. 539 (2001), 75-122. [ Links ]
[12] Y. Bugeaud, M. Mignotte & S. Siksek, Classical and modular approaches to expo- nential Diophantine equations II. The Lebesgue-Nagell equation, Compositio Math. 142 (2006), 31-62. [ Links ]
[13] J. H. E. Cohn, The Diophantine equation x2+2k = yn, Arch. Math. (Basel) 59 (1992), 341-344. [ Links ]
[14] J. H. E. Cohn, The Diophantine equation x2+C = yn, Acta Arith. 65 (1993), 367-381. [ Links ]
[15] J. H. E. Cohn, The Diophantine equation x2 + 2k = yn. II, Int. J. Math. Math. Sci. 22 (1999), 459-462. [ Links ]
[16] J. H. E. Cohn, The Diophantine equation x2 + C = yn. II, Acta Arith. 109 (2003), 205-206. [ Links ]
[17] Maohua Le, A note on the Diophantine equation x2 + 7 = yn, Glasgow Math. J. 39 (1997), 59-63. [ Links ]
[18] M. Le, On Cohn's conjecture concerning the Diophantine equation x2+2m = yn, Arch. Math. (Basel) 78 [1] (2002), 26-35. [ Links ]
[19] M. Le, On the Diophantine equation x2 + p2 = yn, Publ. Math. Debrecen 63 (2003), 67-78. [ Links ]
[20] V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'équation xm = y2 + 1, Nouvelles Annales des Mathématiques 1 [9] (1850), 178-181. [ Links ]
[21] J.-L. Lesage, Différence entre puissances et carrés d'entiers, J. Number Theory 73 (1998), 390-425. [ Links ]
[22] W. Ljunggren, Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen, Ark. Mat. Astr. Fys. 29A [13] (1943). [ Links ]
[23] F. Luca, On a Diophantine equation, Bull. Austral. Math. Soc. 61 (2000), 241-246. [ Links ]
[24] F. Luca, On the equation x2 +2a3b = yn, Int. J. Math. Math. Sci. 29 (2002), 239-244. [ Links ]
[25] M. Mignotte, A kit on linear forms in three logarithms, IRMA, Strasbourg, to appear. [ Links ]
[26] M. Mignotte & B. M. M. de Weger, On the Diophantine equations x2 + 74 = y5 and x2 + 86 = y5, Glasgow Math. J. 38 (1996), 77-85. [ Links ]
[27] T. Nagell, Sur l'impossibilité de quelques équations à deux indéterminées, Norsk Mat. Forensings Skrifter 13 (1923), 65-82. [ Links ]
[28] T. Nagell, LΦsning til oppgave nr 2, 1943, s. 29, Nordisk Mat. Tidskr. 30 (1948), 62-64. [ Links ]
[29] T. Nagell, Verallgemeinerung eines Fermatschen Satzes, Arch. Math. (Basel) 5 (1954), 153-159. [ Links ]
[30] T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Regiae Soc. Sci. Upsaliensis 4 16 [2] (1955). [ Links ]
[31] T. Nagell, Collected papers of Trygve Nagell. Vol. 1-4., Edited by Paulo Ribenboim. Queen's Papers in Pure and Applied Mathematics, Queen's University 121, Kingston, ON, 2002. [ Links ]
[32] T. N. Shorey & R. Tijdeman, Exponential Diophantine equations, Cambridge Uni- versity Press, Cambridge, 1986. [ Links ]
[33] S. Siksek, On the Diophantine equation x2 = yp +2kzp, J. Théor. Nombres Bordeaux 15 (2003), 839-846. [ Links ]
[34] S. Siksek, The modular approach to Diophantine equations., In: Explicit Methods in Number Theory, Panoramas et Synthèses,, Société Mathématique De France, to appear. [ Links ]
[35] S. Siksek & J. E. Cremona, On the Diophantine equation x2 + 7 = ym, Acta Arith. 109 (2003), 143-149. [ Links ]
[36] V. G. Sprindzuk, Classical Diophantine equations, Lecture Notes in Mathematics 1559, Springer-Verlag, Berlin, 1993. [ Links ]
[37] B. Sury, On the Diophantine equation x2 + 2 = yn, Arch. Math. (Basel) 74 (2000), 350-355. [ Links ]
Recibido en octubre de 2005. Aceptado en febrero de 2006