Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.43 no.1 Bogotá Jan./June 2009
1Harish-Chandra Research Institute, Allahabad, India. Email: kalyan@mri.ernet.in
2UNAM, Morelia, Mexico. Email: fluca@matmor.unam.mx
In this paper, we study the appearance of perfect powers in the first component of a non-minimal solution of a Pell equation. We give an upper bound on the counting function of the positive integers n having the property that some power of it (of exponent larger than 1) is the first component of a non-minimal solution of a Pell equation, and we present a Diophantine application.
Key words: Pell equation.
2000 Mathematics Subject Classification: 11R58, 11R29.
En este trabajo, investigamos la aparición de las potencias perfectas en la primera componente de una solución no minimal de una ecuación de Pell. Damos una cota superior sobre la función de conteo del conjunto de los enteros positivos n tal que alguna potencia suya con exponente mayor que 1 es la primera componente de una solución no-minimal de una ecuación de Pell y presentamos una aplicación Diofántica.
Palabras clave: Ecuación de Pell.
Texto completo disponible en PDF
References
[1] Baker, A. & Wüstholz, G., `Logarithmic forms and group varieties´, J. Reine Angew. Math. 442, (1993), 19-62. [ Links ]
[2] Bugeaud, Y., `Sur la distance entre deux puissances pures´, C.R. Acad. Sci. Paris Sèr. I Math. 332, (1996), 1119-1121. [ Links ]
[3] Bugeaud, Y. & Laurent, M., `Minoration effective de la distance p-adique entre puissances de nombres algèbriques´, J. Number Theory 61, (1996), 311-342. [ Links ]
[4] Carmichael, R. D., `On the numerical factors of the arithmetic forms αn \pm βn´, Ann. Math. 2, (1913), 30-70. [ Links ]
[5] Chakraborty, K., Luca, F. & Mukhopadhyay, A., `Exponents of class groups of real quadratic fields´, Int. J. Number Theory 4, (2008), 597-611. [ Links ]
[6] Cohn, J., `The Diophantine equation x4-Dy21 II´, Acta Arith. 78, (1997), 401-403. [ Links ]
[7] Esmonde, J. & Murty, M., Problems in Algebraic Number Theory, Springer Verlag, New York, 1999. [ Links ]
[8] Evertse, J. & Silverman, J., `Uniform bounds for the number of solutions to ynf(x)´, Math. Proc. Cambr. Phil. Soc. 100, (1986), 237-248. [ Links ]
[9] Ljunggren, W., `Über die gleichung x4-Dy21´, Arch. Math. Naturv. 45, 5 (1942), 61-70. [ Links ]
[10] Luca, F. & Walsh, P., `The product of like-indexed terms in binary recurrences´, J. Number Theory 96, (2002), 152-173. [ Links ]
[11] Nemes, I. & Petho, A., `Polynomial values in linear recurrences II´, J. Number Theory 24, (1986), 47-53. [ Links ]
[12] Schmidt, W., Diophantine approximations and diophantine equations, Springer Verlag, Berlin, 1991. Lecture Notes in Artificial Intelligence, 1467. [ Links ]
[13] Shorey, T. & Stewart, C., `On the diophantine equation ax2t+bxty+cy2d and pure powers in recurrence sequences´, Math. Scand. 52, (1983), 24-36. [ Links ]
[14] Shorey, T. & Tijdeman, R., Exponential Diophantine Equations, Cambridge U. Press, Cambridge, 1986. [ Links ]
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv43n1a07,
AUTHOR = {Chakraborty, Kalyan and Luca, Florian},
TITLE = {{Perfect powers in solutions to Pell equations}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2009},
volume = {43},
number = {1},
pages = {71-86}
}