Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.48 no.1 Bogotá Jan./June 2014
https://doi.org/10.15446/recolma.v48n1.45192
http://dx.doi.org/10.15446/recolma.v48n1.45192
1Universität Osnabrück, Osnabrück, Germany. Email: hbrenner@uos.de
2Universität Osnabrück, Osnabrück, Germany. Email: dagomez1982@yahoo.com
We study the connectedness property of the spectrum of forcing algebras over a noetherian ring. In particular we present for an integral base ring a geometric criterion for connectedness in terms of horizontal and vertical components of the forcing algebra. This criterion allows further simplifications when the base ring is local, or one--dimensional, or factorial. Besides, we discuss whether the connectedness of forcing algebras is a local property. Finally, we present a characterization of the integral closure of an ideal by means of the universal connectedness of the corresponding forcing morphism.
Key words: Forcing algebra, Connectedness, Integral closure.
2000 Mathematics Subject Classification: 13B22, 14A15, 14R25, 54D05.
Estudiamos la conexidad del espectro de álgebras de forzado sobre anillo noetherianos. En particular, presentamos un criterio de conexidad cuando el anillo base es un dominio en términos de las componentes verticales y horizontales del álgebra de forzado. Este criterio nos permite obtener simplificaciones en el caso en el que el anillo base es local, o 1--dimensional o un dominio de factorización única. Además, discutimos sobre si la conexidad de las álgebras de forzado es una propiedad local. Finalmente, presentamos una caracterización de pertenencia a la clausura entera de un ideal en términos de la conexidad universal del correspondiente morfismo de forzado.
Palabras clave: Álgebra de forzado, conexidad, clausura entera.
Texto completo disponible en PDF
References
[1] H. Brenner, Tight Closure and Vector Bundles, 'Three Lectures on Commutative Algebra', (2008), Vol. 42 of University Lecture Series, AMS, p. [ Links ] 1-71.
[2] H. Brenner, Forcing Algebras, Syzygy Bundles, and Tight Closure, 'Commutative Algebra. Noetherian and non-Noetherian Perspectives', (2011), Springer. [ Links ]
[3] H. Brenner, 'Some Remarks on the Affineness of A1-Bundles', ArXiv, (2012). [ Links ]
[4] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, USA, [ Links ] 1995.
[5] D. d. J. Gomez Ramirez, Homological Conjectures, Closure Operations, Vector Bundles and Forcing Algebras, PhD thesis, Universidad Nacional de Colombia with cooperation of the University of Osnabrück, [ Links ] 2013.
[6] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), 'Lecture Notes in Mathematics', (1971), Vol. 224, Springer-Verlag, Berlin, Germany. [ Links ]
[7] R. Hartshorne, Algebraic Geometry, Springer, New York, USA, [ Links ] 1977.
[8] M. Hochster, 'Solid closure', Contemp. Math. 159, (1994), 103-172. [ Links ]
[9] C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, Vol. LMS 336, Cambridge University Press, Cambridge, USA, [ Links ] 2006.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv48n1a01,
AUTHOR = {Brenner, Holger and Gómez-Ramírez, Danny de Jesús},
TITLE = {{On the Connectedness of the Spectrum of Forcing Algebras}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2014},
volume = {48},
number = {1},
pages = {1--19}
}