Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.48 no.2 Bogotá July/Dec. 2014
https://doi.org/10.15446/recolma.v48n2.54123
Doi: http://dx.doi.org/10.15446/recolma.v48n2.54123
1Universidad Nacional de Colombia, Bogotá, Colombia. Email: recastillo@unal.edu.co
2Pontificia Universidad Javeriana, Bogotá, Colombia. Email: silva-h@javeriana.edu.co
3Universidad de Oriente, Cumaná, Venezuela. Email: eddycharles2007@gmail.com
In this paper we introduce a generalization of the concept of Riesz p-variation and construct a function space which is normalizable and moreover is a Banach space as well as a Banach algebra. Furthermore, using Medved'ev approach we obtain an integral characterization of the functions in this function space.
Key words: Riesz p-variation, (\phi, α)-Bounded variation, Bounded variation.
2000 Mathematics Subject Classification: 26A45, 26B30, 26A16, 26A24.
En este artículo se introduce una generalización del concepto de \hboxp-variación de Riesz y se construye un espacio de funciones que es normalizable y además es tanto espacio de Banach como un álgebra de Banach. Adicionalmente, usando el enfoque dado por Medved'ev se obtiene una caracterización integral de las funciones en dicho espacio funcional.
Palabras clave: p-Variación de Riesz, variación (\phi, α)-acotada, variación acotada.
Texto completo disponible en PDF
References
[1] J. Appell, J. Banás, and N. J. Merentes, Bounded Variation and Around, de Gruyter, Berlin, Germany, [ Links ] 2014.
[2] R. E. Castillo, H. Rafeiro, and E. Trousselot, 'Embeddings on Spaces of Generalized Bounded Variation', Rev. Colomb. Mat. 48, 1 (2014), 97-109. [ Links ]
[3] R. E. Castillo and E. Trousselot, 'On Functions of (p,α)-Bounded Variation', Real Anal. Exchange 34, 1 (2009), 49-60. [ Links ]
[4] M. C. Chakrabarty, 'Some Results On \mathsfAC-ω Functions', Fund. Math. 64, (1969a), 219-230. [ Links ]
[5] M. C. Chakrabarty, 'Some Results on ω-Derivatives and \mathsfBV-ω Functions', J. Austral. Math. Soc. 9, (1969b), 345-360. [ Links ]
[6] P. R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, USA, [ Links ] 1950.
[7] R. L. Jeffery, 'Generalized Integrals with respect to Functions of Bounded Variation', Canad. J. Math. 10, (1958), 617-626. [ Links ]
[8] C. Jordan, 'Sur la série de Fourier', C. R. Acad. Paris 2, (1881), 228-230. [ Links ]
[9] L. Maligranda and W. Orlicz, 'On Some Properties of Functions of Generalized Variation', Monatsh. Math. 104, 1 (1987), 53-65. [ Links ]
[10] Y. T. Medved'ev, 'Generalization of a Theorem of F. Riesz', Uspehi Matem. Nauk (N.S.) 8, 6(58) (1953), 115-118. [ Links ]
[11] J. Musielak, Orlicz Spaces and Modular Spaces, Vol. 1034 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, Germany, [ Links ] 1983.
[12] B. G. Pachpatte, Mathematical Inequalities, North-Holland Mathematical Library, Elsevier Science, [ Links ] 2005.
[13] F. Riesz, 'Untersuchungen über Systeme Integrierbarer Funktionen', Math. Ann. 69, 4 (1910), 449-497. [ Links ]
[14] A. I. Vol'pert and S. I. Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Vol. 8 of Mechanics: Analysis, Martinus Nijhoff Publishers, Dordrecht, Holland, [ Links ] 1985.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv48n2a03,
AUTHOR = {Castillo, René Erlin and Rafeiro, Humberto and Trousselot, Eduard},
TITLE = {{A Generalization for the Riesz \boldsymbol{p}-Variation}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2014},
volume = {48},
number = {2},
pages = {165--190}
}