Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.48 no.2 Bogotá July/Dec. 2014
https://doi.org/10.15446/recolma.v48n2.54126
Doi: http://dx.doi.org/10.15446/recolma.v48n2.54126
1Karlsruhe Institute of Technology, Karlsruhe, Germany. Email: gerd.herzog2@kit.edu
We give a condition so that certain mixed monotone mappings on function spaces have a contractive multiplicative relaxation with respect to Thompson's metric. The corresponding fixed point theorem can be applied to special types of integral equations, for example.
Key words: Thompson metric, Mixed monotone mappings, Fixed points, Contraction, Relaxation.
2000 Mathematics Subject Classification: 47H10, 47H07.
Damos una condición para que ciertas aplicaciones monótonas mixtas sobre espacios de funciones tengan una relajación multiplicativa con respecto a las métricas de Thompson. El correspondiente teorema de punto fijo puede ser aplicado a tipos especiales de ecuaciones integrales, por ejemplo.
Palabras clave: Metrica de Thompson, aplicación mixta monotona, puntos fijos, contracción, relajación.
Texto completo disponible en PDF
References
[1] V. Berinde, Iterative Approximation of Fixed Points, Springer, [ Links ] 2007.
[2] Y. Z. Chen, 'Thompson's Metric and Mixed Monotone Operators', J. Math. Anal. Appl. 177, (1993), 31-37. [ Links ]
[3] D. Guo, 'Fixed Points of Mixed Monotone Operators With Applications', Appl. Anal. 31, (1988), 215-224. [ Links ]
[4] D. Guo, Y. J. Cho, and J. Zhu, Partial Ordering Methods in Nonlinear Problems, Nova Science Publishers, [ Links ] 2004.
[5] C. Y. Huang, 'Fixed Point Theorems for a Class of Positive Mixed Monotone Operators', Math. Nachr. 285, (2012), 659-669. [ Links ]
[6] D. H. Hyers, G. Isac, and T. M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific, [ Links ] 1997.
[7] M. D. Rus, The Method of Monotone Iterations for Mixed Monotone Operators, Ph.D. Thesis Summary, Babes-Bolyai University, Romania, [ Links ] 2010.
[8] A. Thompson, 'On Certain Contraction Mappings in a Partially Ordered Vector Space', Proc. Am. Math. Soc. 14, (1963), 438-443. [ Links ]
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv48n2a05,
AUTHOR = {Herzog, Gerd},
TITLE = {{Multiplicative Relaxation with respect to Thompson's Metric}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2014},
volume = {48},
number = {2},
pages = {211--217}
}