SciELO - Scientific Electronic Library Online

 
vol.48 issue2Multiplicative Relaxation with respect to Thompson's MetricTransitivity of the Induced Map C_n(f) author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.48 no.2 Bogotá July/Dec. 2014

https://doi.org/10.15446/recolma.v48n2.54128 

Doi: http://dx.doi.org/10.15446/recolma.v48n2.54128

Power of Two--Classes in k--Generalized Fibonacci Sequences

Clases de potencias de dos en sucesiones k--generalizadas de Fibonacci

CARLOS ALEXIS GÓMEZ1, FLORIAN LUCA2

1Universidad del Valle, Cali, Colombia. Email: carlos.a.gomez@correounivalle.edu.co
2Universidad Nacional Autónoma de México, Juriquilla, México. University of the Witwatersrand, Johannesburg, South Africa. Email: fluca@matmor.unam.mex


Abstract

The k-generalized Fibonacci sequence \big(Fn(k)\big)n\geq 2-k is the linear recurrent sequence of order k, whose first k terms are 0, …, 0, 1 and each term afterwards is the sum of the preceding k terms. Two or more terms of a k-generalized Fibonacci sequence are said to be in the same power of two-class if the largest odd factors of the terms are identical. In this paper, we show that for each k\ge 2, there are only two kinds of power of two-classes in a k-generalized Fibonacci sequence: one, whose terms are all the powers of two in the sequence and the other, with a single term.

Key words: k--Generalized Fibonacci numbers, Lower bounds for nonzero linear forms in logarithms of algebraic numbers.


2000 Mathematics Subject Classification: 11B39, 11J86.

Resumen

La sucesión k--generalizada de Fibonacci \big(Fn(k)\big)n\geq2-k es la sucesión lineal recurrente de orden k, cuyos primeros k términos son 0, …, 0, 1 y cada término posterior es la suma de los k términos precedentes. Se dice que dos o más términos de una sucesión k--generalizada de Fibonacci están en la misma clase de potencia de dos si los mayores factores impares de los términos son idénticos. En este trabajo, se muestra que para cada k\ge2, sólo hay dos tipos de clases de potencias de dos en una secuencia k--generalizada de Fibonacci: una, cuyos términos son todas las potencias de dos en la sucesión y la otra, con un único término.

Palabras clave: Números de Fibonacci k-generalizados, cotas inferiores para formas lineales en logaritmos de números algebraicos.


Texto completo disponible en PDF


References

[1] F. T. H. and C. Cooper, 'Some Identities for R-Fibonacci Numbers', Fibonacci Quart. 49, (2011), 158-164.         [ Links ]

[2] J. Bravo and F. Luca, 'Powers of Two in Generalized Fibonacci Sequences', Rev. Colombiana Mat. 46, 1 (2012), 67-79.         [ Links ]

[3]. R. D. Carmichael 'On the Numerical Factors of the Arithmetic Forms αn\pmβn' Annals of Mathematics15 1/4 (1913) 30-70        [ Links ]

[4] G. P. Dresden and Z. Du, 'A Simplified Binet Formula for k-Generalized Fibonacci Numbers', J. Integer Sequences 17, (2014). Article 14.         [ Links ]4.7.

[5] A. Dujella and A. Pethö, 'A Generalization of a Theorem of Baker and Davenport', Quart. J. Math. Oxford 49, (1998), 291-306.         [ Links ]

[6] L. K. Hua and Y. Wang, Applications of Number Theory to Numerical Analysis, Springer-Verlag, Berlin, Germany,         [ Links ] 1981.

[7] R. Keskin and Z. Yosma, 'On Fibonacci and Lucas Numbers of the Form c x2', Journal of Integer Sequences 14, (2011),         [ Links ] 1-12.

[8] E. M. Matveev, 'An Explicit Lower Bound for a Homogeneous Rational Linear Form in the Logarithms of Algebraic Numbers', Izv. Math. 64, (2000), 1217-1269.         [ Links ]

[9] P. Ribenboim, 'Square-Classes of Fibonacci and Lucas Numbers', Portugaliae Math. 46, (1989), 159-175.         [ Links ]

[10] D. A. Wolfram, 'Solving Generalized Fibonacci Recurrences', The Fibonacci Quarterly 36, (1998), 129-145.         [ Links ]


(Recibido en febrero de 2014. Aceptado en julio de 2014)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv48n2a06,
    AUTHOR  = {Gómez, Carlos Alexis and Luca, Florian},
    TITLE   = {{Power of Two--Classes in \boldsymbol{k}--Generalized Fibonacci Sequences}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2014},
    volume  = {48},
    number  = {2},
    pages   = {219--234}
}