Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.55 no.1 Bogotá Jan./June 2021 Epub Nov 04, 2021
https://doi.org/10.15446/recolma.v55n1.99097
Original articles
Boundedness of the Maximal Function of the Ornstein-Uhlenbeck semigroup on variable Lebesgue spaces with respect to the Gaussian measure and consequences
Acotación de la Función Maximal del Semigrupo de Ornstein-Uhlenbeck en Espacios de Lebesgue Variables y sus consecuencias
1 Universidad Centro Occidental Lisandro Alvarado, Barquisimeto, Venezuela
2 Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
3 Roosevelt University, Chicago, USA
The main result of this paper is the proof of the boundedness of the Maximal Function T* of the Ornstein-Uhlenbeck semigroup {T t } t≥0 in ℝ d , on Gaussian variable Lebesgue spaces L p(·) (γ d ), under a condition of regularity on p(·) following [5] and [8]. As an immediate consequence of that result, the Lp(·)(γ d )-boundedness of the Ornstein-Uhlenbeck semigroup {T t } t≥0 in ℝ d is obtained. Another consequence of that result is the Lp(·)(γ d )-boundedness of the Poisson-Hermite semigroup and the Lp(·)(γ d )-boundedness of the Gaussian Bessel potentials of order β > 0.
Keywords: Gaussian harmonic analysis; variable Lebesgue spaces; Ornstein-Uhlenbeck semigroup
El principal resultado de este artículo es la prueba de la acotación de la Función Maximal T* del semigrupo de Ornstein-Uhlenbeck {T t } t≥0 en ℝ d sobre espacios de Lebesgue variables respecto de la medida Gaussiana L p(·) (γ d ), asumiendo una condición de regularidad en p(·) siguiendo [5] y [8]. Como consecuencia inmediata de éste resultado se obtiene la acotación- L p(·) (γ d ) del semigrupo de Ornstein-Uhlenbeck {T t } t≥0 en ℝ d . Otras consecuencias del resultado es la acotación L p(·) (γ d ) del semigrupo Poisson-Hermite y la acotación L p(·) (γ d ) de los potenciales de Bessel Gaussianos de orden β > 0.
Palabras clave: Análisis Armónico Gaussiano; espacios de Lebesgue Gaussianos; semigrupo de Ornstein-Uhlenbeck
REFERENCES
1. D. Bakry, Functional inequalities for Markov semigroups., Probability measures on groups: recent directions and trends, Tata Inst. Fund. Res., Mumbai, 2006. [ Links ]
2. D. Bakry and O. Mazet, Characterization of Markov semigroups on R associated to some families of orthogonal polynomials, Sem. Prob. XXXVII. Lec. Notes in Math 1832 Springer (2003), 60-80. [ Links ]
3. E. Berezhnoi, Two-weighted estimations for the Hardy-Littlewood maximal function in ideal banach spaces, Proc Amer Math Soc 127 (1999), no. 1, 79-87. [ Links ]
4. D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser-Springer, 2013. [ Links ]
5. E. Dalmasso and R. Scotto, Riesz transforms on variable Lebesgue spaces with Gaussian measure, Integral Transforms and Special Functions 28 (2017), no. 5, 403-420. [ Links ]
6. L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, 2011. [ Links ]
7. E. Fabes, C. Gutiérrez, and R. Scotto , Weak-type estimates for the Riesz transforms associated with the gaussian measure, Rev Mat Iber 10 (1994), no. 2, 229-281. [ Links ]
8. S. Pérez, Estimaciones puntuales y en normas para operadores relacionados con el semigrupo de Ornstein-Uhlenbeck, Tesis doctoral, Universidad Autónoma de Madrid, 1996. [ Links ]
9. E. Pineda and W. Urbina, Non tangential convergence for the Ornstein-Uhlenbeck semigroup, Divulgaciones Matemáticas 16 (2007), no. 1, 107-124. [ Links ]
10. E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press., 1970. [ Links ]
11. W. Urbina, Semigroups of operators for classical orthogonal polynomials and functional inequalities, Séminaires et Congrès (25), CIMPA Workshop Mérida, Venezuela, French Mathematical Society (SMF), 2012. [ Links ]
12. W. Urbina, Gaussian harmonic analysis, Springer Monographs in Mathematics, Springer-Nature, 2019. [ Links ]
Received: June 22, 2020; Accepted: February 11, 2021