Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Rev.Colomb.Estad. vol.44 no.1 Bogotá Jan./June 2021 Epub Feb 24, 2021
https://doi.org/10.15446/rce.v44n1.84816
Artículos originales de investigación
On a New Procedure for Identifying a Dynamic Common Factor Model
Sobre un nuevo procedimiento para identificar un modelo de factores comunes dinámicos
1Department of Industrial Engineering, Pontificia Universidad Javeriana, Bogotá, Colombia
2Department of Statistics, Universidad Nacional de Colombia, Bogotá, Colombia
3Department of Statistics, Universidad Carlos III de Madrid, Madrid, España
In the context of the exact dynamic common factor model, canonical correlations in a multivariate time series are used to identify the number of latent common factors. In this paper, we establish a relationship between canonical correlations and the autocovariance function of the factor process, in order to modify a pre-established statistical test to detect the number of common factors. In particular, the test power is increased. Additionally, we propose a procedure to identify a vector ARMA model for the factor process, which is based on the so-called simple and partial canonical autocorrelation functions. We illustrate the proposed methodology by means of some simulated examples and a real data application.
Key words: Canonical correlations; Dynamic common factors; Multivariate time series
En el contexto del modelo exacto de factores comunes dinámicos, las correlaciones canónicas en series de tiempo multivariadas son usadas para identificar el número de factores latentes. En este artículo, establecemos la relación entre correlación canónica y la función de autocovarianza del proceso de los factores, con el fin de modificar una prueba estadística diseñada para identificar el número de factores comunes. En particular, se incrementa la potencia de la prueba. Adicionalmente, proponemos un procedimiento para identificar el modelo VARMA para el proceso de los factores, el cual está basado en lo que denominamos las funciones de autocorrelación simple y parcial. Ilustramos la metodología propuesta por medio de ejemplos simulados y una aplicación con datos reales.
Palabras clave: Correlación canónica; Factores comunes dinámicos; Series de tiempo multivariadas
References
Ahn, S. C. & Horenstein, A. R. (2013), 'Eigenvalue Ratio Test for the Number of Factors', Econometrica 81(3), 1203-1227. [ Links ]
Anderson, T. (1984), An Introduction to Multivariate Statistical Analysis, Wiley Series in Probability and Statistics - Applied Probability and Statistics Section Series, Wiley. [ Links ]
Box, G. E. P. & Jenkins, G. M. (1970), Time series analysis: forecasting and control, San Francisco, CA: Holden-Day. [ Links ]
Doz, C. & Fuleky, P. (2020), Dynamic factor models, in 'Macroeconomic Forecasting in the Era of Big Data', Springer, pp. 27-64. [ Links ]
Geweke, J. (1977), 'The dynamic factor analysis of economic timeseries models', Latent Variables in Socio-Economic Models pp. 365-383. [ Links ]
Jungbacker, B. & Koopman, S. J. (2015), 'Likelihood-Based Dynamic Factor Analysis for Measurement and Forecasting', The Econometrics Journal 18(2), C1-C21. [ Links ]
Lam, C. & Yao, Q. (2012), 'Factor modeling for high-dimensional time series: Inference for the number of factors1', Annals of Statistics 40(2), 694-726. [ Links ]
Metaxoglou, K. & Smith, A. (2007), 'Maximun likelihood estimation of VARMA models using a state-space EM algorithm', Journal of Time Series Analysis 28(5), 666-685. [ Links ]
Nieto, F. H., Peña, D. & Saboyá, D. (2016), 'Common seasonality in multivariate time series', Statistica Sinica 26, 1389-1410. [ Links ]
Peña, D. (2010), Análisis de series temporales, El Libro Universitario - Manuales, Alianza Editorial. [ Links ]
Peña, D. & Box, G. E. P. (1987), 'Identifying a Simplifying Structure in Time Series', Journal of the American Statistical Association 82(399), 836-843. [ Links ]
Peña, D. & Poncela, P. (2006), 'Nonstationary dynamic factor analysis', Journal of Statistical Planning and Inference 136(4), 1237-1257. [ Links ]
Reinsel, G. C. (1997), Elements of Multivariate Time Series Analysis, 2 edn, Springer-Verlag. [ Links ]
Stock, J. H. & Watson, M. (2011), Dynamic factor models, in P. C. Michael & D. F. Hendry, eds, 'Oxford Handbook on Economic Forecasting', Oxford University Press, Oxford. [ Links ]
Stock, J. H. & Watson, M. W. (2016), Dynamic factor models, factor-augmented vector autoregressions, and structural vector autoregressions in macroeconomics, in J. B. Taylor & H. Uhlig, eds, 'Handbook of macroeconomics', Vol. 2 of Handbook of Macroeconomics, Elsevier, chapter 8, pp. 415-525. [ Links ]
Tiao, G. C. & Tsay, R. S. (1989), 'Model specification in multivariate time series', Journal of the Royal Statistical Society. Series B (Methodological) 51(2), 157-213. [ Links ]