SciELO - Scientific Electronic Library Online

 
vol.44 issue1On Some Statistical Properties of the Spatio-Temporal Product Density author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.44 no.1 Bogotá Jan./June 2021  Epub Feb 24, 2021

https://doi.org/10.15446/rce.v44n1.84816 

Artículos originales de investigación

On a New Procedure for Identifying a Dynamic Common Factor Model

Sobre un nuevo procedimiento para identificar un modelo de factores comunes dinámicos

Stevenson Bolívar1  a 

Fabio H Nieto2  b 

Daniel Peña3  c 

1Department of Industrial Engineering, Pontificia Universidad Javeriana, Bogotá, Colombia

2Department of Statistics, Universidad Nacional de Colombia, Bogotá, Colombia

3Department of Statistics, Universidad Carlos III de Madrid, Madrid, España


Abstract

In the context of the exact dynamic common factor model, canonical correlations in a multivariate time series are used to identify the number of latent common factors. In this paper, we establish a relationship between canonical correlations and the autocovariance function of the factor process, in order to modify a pre-established statistical test to detect the number of common factors. In particular, the test power is increased. Additionally, we propose a procedure to identify a vector ARMA model for the factor process, which is based on the so-called simple and partial canonical autocorrelation functions. We illustrate the proposed methodology by means of some simulated examples and a real data application.

Key words: Canonical correlations; Dynamic common factors; Multivariate time series

Resumen

En el contexto del modelo exacto de factores comunes dinámicos, las correlaciones canónicas en series de tiempo multivariadas son usadas para identificar el número de factores latentes. En este artículo, establecemos la relación entre correlación canónica y la función de autocovarianza del proceso de los factores, con el fin de modificar una prueba estadística diseñada para identificar el número de factores comunes. En particular, se incrementa la potencia de la prueba. Adicionalmente, proponemos un procedimiento para identificar el modelo VARMA para el proceso de los factores, el cual está basado en lo que denominamos las funciones de autocorrelación simple y parcial. Ilustramos la metodología propuesta por medio de ejemplos simulados y una aplicación con datos reales.

Palabras clave: Correlación canónica; Factores comunes dinámicos; Series de tiempo multivariadas

Full text available only in PDF format

References

Ahn, S. C. & Horenstein, A. R. (2013), 'Eigenvalue Ratio Test for the Number of Factors', Econometrica 81(3), 1203-1227. [ Links ]

Anderson, T. (1984), An Introduction to Multivariate Statistical Analysis, Wiley Series in Probability and Statistics - Applied Probability and Statistics Section Series, Wiley. [ Links ]

Box, G. E. P. & Jenkins, G. M. (1970), Time series analysis: forecasting and control, San Francisco, CA: Holden-Day. [ Links ]

Doz, C. & Fuleky, P. (2020), Dynamic factor models, in 'Macroeconomic Forecasting in the Era of Big Data', Springer, pp. 27-64. [ Links ]

Geweke, J. (1977), 'The dynamic factor analysis of economic timeseries models', Latent Variables in Socio-Economic Models pp. 365-383. [ Links ]

Jungbacker, B. & Koopman, S. J. (2015), 'Likelihood-Based Dynamic Factor Analysis for Measurement and Forecasting', The Econometrics Journal 18(2), C1-C21. [ Links ]

Lam, C. & Yao, Q. (2012), 'Factor modeling for high-dimensional time series: Inference for the number of factors1', Annals of Statistics 40(2), 694-726. [ Links ]

Metaxoglou, K. & Smith, A. (2007), 'Maximun likelihood estimation of VARMA models using a state-space EM algorithm', Journal of Time Series Analysis 28(5), 666-685. [ Links ]

Nieto, F. H., Peña, D. & Saboyá, D. (2016), 'Common seasonality in multivariate time series', Statistica Sinica 26, 1389-1410. [ Links ]

Peña, D. (2010), Análisis de series temporales, El Libro Universitario - Manuales, Alianza Editorial. [ Links ]

Peña, D. & Box, G. E. P. (1987), 'Identifying a Simplifying Structure in Time Series', Journal of the American Statistical Association 82(399), 836-843. [ Links ]

Peña, D. & Poncela, P. (2006), 'Nonstationary dynamic factor analysis', Journal of Statistical Planning and Inference 136(4), 1237-1257. [ Links ]

Reinsel, G. C. (1997), Elements of Multivariate Time Series Analysis, 2 edn, Springer-Verlag. [ Links ]

Stock, J. H. & Watson, M. (2011), Dynamic factor models, in P. C. Michael & D. F. Hendry, eds, 'Oxford Handbook on Economic Forecasting', Oxford University Press, Oxford. [ Links ]

Stock, J. H. & Watson, M. W. (2016), Dynamic factor models, factor-augmented vector autoregressions, and structural vector autoregressions in macroeconomics, in J. B. Taylor & H. Uhlig, eds, 'Handbook of macroeconomics', Vol. 2 of Handbook of Macroeconomics, Elsevier, chapter 8, pp. 415-525. [ Links ]

Tiao, G. C. & Tsay, R. S. (1989), 'Model specification in multivariate time series', Journal of the Royal Statistical Society. Series B (Methodological) 51(2), 157-213. [ Links ]

a M.Sc. E-mail: s_bolivar@javeriana.edu.co

b Ph.D. E-mail: fhnietos@unal.edu.co

c Ph.D. E-mail: daniel.pena@uc3m.es

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License