Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Rev.Colomb.Estad. vol.44 no.2 Bogotá July/Dec. 2021 Epub Aug 27, 2021
https://doi.org/10.15446/rce.v44n2.89102
Original articles of research
Bayesian Modeling Competitions for the Classroom
Concursos de modelos bayesianos para el salón de clases
1 College of Medicine, Biostatistics and Bioinformatics, Penn State University, Hershey, USA
Three educational and engaging competitions are described for students studying Bayesian statistics. These competitions are designed to help students explore the topics of James-Stein estimation, the German tank problem, and resampling inference. These competitions will inspire students to think creatively, challenge students to develop effective Bayesian models, and motivate students to pursue excellence in competition with their peers. The competition structures can be easily adapted for use in introductory or advanced Bayesian statistics courses.
Key words: James-Stein estimation; German tank problem; Capturerecapture
Se describen tres concursos educativos y atractivos para los alumnos que estudian estadística bayesiana. Estos concursos están diseñados para ayudar a los estudiantes a explorar los temas del estimador de James-Stein, el problema de los tanques alemanes y la inferencia de remuestreo. Estos concursos inspirarán a los estudiantes a pensar de forma creativa, les desafiarán a desarrollar modelos bayesianos eficaces y les motivarán a buscar la excelencia en competencia con sus compañeros. Las estructuras de los concursos pueden adaptarse fácilmente para su uso en cursos de estadística bayesiana introductorios o avanzados.
Palabras clave: Estimador de James-Stein; Problema de los tanques alemanes; Captura-recaptura
References
Efron, B. (2012), Large-scale inference: empirical Bayes methods for estimation, testing, and prediction, Vol. 1, Cambridge University Press. [ Links ]
Efron, B. & Morris, C. (1977), `Stein's paradox in statistics', Scientific American 236(5), 119-127. [ Links ]
Goodman, L. A. (1952), ‘Serial number analysis', Journal of the American Statistical Association 47(260), 622-634. [ Links ]
Goodman, L. A. (1954), ‘Some practical techniques in serial number analysis', Journal of the American Statistical Association 49(265), 97-112. [ Links ]
James, W. & Stein, C. (1961), Estimation with quadratic loss, in ’Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability', Vol. 1, pp. 361-379. [ Links ]
Johnson, R. W. (1994), ‘Estimating the size of a population', Teaching Statistics 16(2), 50-52. [ Links ]
Marin, J.-M. & Robert, C. P. (2014), Bayesian essentials with R, Vol. 48, Springer. [ Links ]
Parker, M. (2018), ‘How to estimate a population using statisticians'. https://www.youtube.com/watch?v=MTmnVBJ9gCI [ Links ]
Ruggles, R. & Brodie, H. (1947), ‘An empirical approach to economic intelligence in World War II', Journal of the American Statistical Association 42(237), 72-91. [ Links ]
Sevcikova, H., Silverman, B. & Raftery, A. (2018), vote: Election Vote Counting, R package version 1.1-0 edn, https://CRAN.R-project.org/package=vote. [ Links ]
Received: July 2020; Accepted: January 2021