Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Rev.Colomb.Estad. vol.45 no.2 Bogotá July/Dec. 2022 Epub Feb 01, 2023
https://doi.org/10.15446/rce.v45n2.95530
Artículos originales de investigación
Likelihood-Based Inference for the Asymmetric Exponentiated Bimodal Normal Model
Inferencia basada en verosimilitud para el modelo asimétrico bimodal normal exponenciado
1 Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería, Colombia
2 Facultad de Estadítica, Universidad Santo Tomás, Bogotá, Colombia
Asymmetric probability distributions have been widely studied by various authors in recent decades. Special interest has been had families of flexible distributions with the capability to have into account degree of skewness and kurtosis greater than the cl 1 distributions widely known in statistical theory. While, most of the new distributions fit unimodal data, and a few fit bimodal data, in the bimodal proposals, singularity problems have been found in the information matrices. Therefore, in this paper, extensions of the alpha-power family of distributions are developed, which have non-singular information matrix. The new proposals are based on the bimodal-normal and bimodal elliptical skew-normal distributions. These new extensions allow modeling asymmetric bimodal data, which are commonly found in several areas of scientific interest. The properties of these new distributions of probability are also studied in detail, and the statistical inference process is carried out to estimate the parameters of the proposed models. The stochastic convergence for the maximum likelihood estimator (MLE) vector can be found due to the non-singularity of the expected information matrix in the corresponding support. We also introduced extensions of the asymmetric bimodal normal and bimodal elliptical skew-normal models for the situations in which the data present censorship. A small simulation study to evaluate the properties of the MLE is also presented and, finally, two applications to real data set are presented for illustrative purposes.
Key words: Alpha-Power distribution; Asymmetric models; Bimodal normal distribution; Censored data; Maximum likelihood estimation
Las distribuciones de probabilidad asimétricas han sido ampliamente estudiadas por diversos autores en las últimas décadas. Se ha tenido especial interés en familias de distribuciones flexibles con la capacidad de tener en cuenta grados de asimetría y curtosis mayores que las distribuciones el ampliamente conocidas en teoría estadística. Si bien la mayoría de las nuevas distribuciones se ajustan a datos unimodales y unas pocas a datos bimodales, en las propuestas bimodales se han encontrado problemas de singularidad en las matrices de información. Por lo tanto, en este artículo se desarrollan extensiones de la familia de distribuciones alfa-potencia, que tienen matriz de información no singular. Las nuevas propuestas se basan en las distribuciones bimodal-normal y bimodal elíptica sesgada-normal. Estas nuevas extensiones permiten modelar datos bimodales asimétricos, que se encuentran comúnmente en varias áreas de interés científico. También se estudian en detalle las propiedades de estas nuevas distribuciones de probabilidad, y se realiza el proceso de inferencia estadística para estimar los parámetros de los modelos propuestos. La convergencia estocástica para el vector estimador de máxima verosimilitud (EMV) se puede encontrar debido a la no singularidad de la matriz de información esperada en el soporte correspondiente. También introdujimos extensiones de los modelos asimétrico bimodal normal y bimodal elíptico sesgado-normal para las situaciones en las que los datos presentan censura. También se presenta un pequeño estudio de simulación para evaluar las propiedades del EMV y, finalmente, se presentan dos aplicaciones a conjuntos de datos reales con fines ilustrativos.
Palabras clave: Distribución normal bimodal; Distribución alfa-potencia; Datos censurados; Modelos asimétricos; Estimación por máxima verosimilitud
References
Akaike, H. (1974), 'A new look at the statistical model identification', IEEE Transactions on Automatic Control 19(6), 716-723. [ Links ]
Arnold, B. C, Gómez, H. & Salinas, H. (2009), 'On multiple contraint skewed models', Scandinavian Journal of Statistics 43(3), 279-293. [ Links ]
Azzalini, A. (1985), 'A class of distributions which includes the normal ones', Scandinavian Journal of Statistics 12(2), 171-178. [ Links ]
Azzalini, A. (1986), 'Further results on a class of distributions which includes the normal ones', Statistical 46(2), 199-208. [ Links ]
Azzalini, A. & Bowman, A. (1990), 'A look at some data on the old faithful geyser', Journal of the Royal Statistical Society. Series C (Applied Statistics) 39(3), 357-365. [ Links ]
Bolfarine, H., Martínez-Flórez, G. & Salinas, H. (2018), 'Bimodal symmetric-asymmetric power-normal families', Communications in Statistics-Theory and Methods 47(2), 259-276. [ Links ]
Bozdogan, H. (1987), 'Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions', Psychometrika 52(3), 345-370. [ Links ]
Durrans, S. (1992), 'Distributions of fractional order statistics in hydrology', Water Resources Research 28(6), 1649-1655. [ Links ]
Elal-Olivero, D. (2010), 'Alpha-skew-normal distribution', Proyecciones Journal of Mathematics 29(3), 224-240. [ Links ]
Elal-Olivero, D., Gómez, H. W. & Quintana, F. A. (2009), 'Bayesian modeling using a class of bimodal skew-elliptical distributions', Journal of Statistical Planning and Inference 139(4), 1484-1492. [ Links ]
Elal-Olivero, D., Olivares-Pacheco, J., Gómez, H. & Bolfarine, H. (2009), 'A new class of non negative distributions generated by symmetric distributions', Communications in Statistics - Theory and Methods 38(7), 993-1008. [ Links ]
Gómez, H., Olivero, D., Salinas, H. & Bolfarine, H. (2009), 'Bimodal extension based on the skew-normal distribution with application to pollen data', Environmetrics 22(1), 50-62. [ Links ]
Gupta, R. & Gupta, R. (2004), 'Generalized skew normal model', Test 13, 501-524. [ Links ]
Gupta, R. & Gupta, R. (2008), 'Analyzing skewed data by power normal model', Test 17, 197-210. [ Links ]
Hartigan, J. & Hartigan, P. (1985), 'The dip test of unimodality', The Annals of Statistics 13(1), 70-84. [ Links ]
Hartigan, P. (1985), 'Algorithm AS 217: Computation of the dip statistics to test for unimodality', Journal of the Royal Statistical Society. Series C (Applied Statistics) 34(1), 320-325. [ Links ]
Henze, N. (1986), 'A probabilistic representation of the skew-normal distribution', Scandinavian Journal of Statistics 13(4), 271-275. [ Links ]
Kim, H. (2005), 'On a class of two-piece skew-normal distribution', Statistics 39(6), 537-553. [ Links ]
Marin, J., Mengersen, K. & Robert, C. (2005), 'Bayesian modelling and inference on mixtures of distributions', Handbook of Statistics 25, 459-507. [ Links ]
Martínez-Flórez, G., Bolfarine, H. & Gómez, H. (2014), 'Skew-normal alpha-power model', Statistics 48(6), 1414-1428. [ Links ]
Martínez-Flórez, G., Bolfarine, H. & Gómez, H. (2018), 'Censored bimodal symmetric-asymmetric families', Statistics and Its Interface 11(2), 237-249. [ Links ]
Martínez-Flórez, G., Tovar-Falón, R. & Jiménez-Narváez, M. (2020), 'Likelihood-Based Inference for the Asymmetric Beta-Skew Alpha-Power Distribution', Symmetry 12(4), 613. [ Links ]
Pewsey, A. (2000), 'Problems of inference for Azzalini's skew-normal distribution', Journal of Applied Statistics 27(7), 859-870. [ Links ]
Pewsey, A., Gómez, H. & Bolfarine, H. (2012), 'Likelihood-based inference for power distributions', Test 21, 775-789. [ Links ]
R Development Core Team (2021), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3900051-07-0. http://www.R-project.org [ Links ]
Schwarz, G. E. (1978), 'Estimating the dimension of a model', Annals of Statistics 6(2), 461-464. [ Links ]
Sulewski, P. (2019), 'Modified Lilliefors goodness-of-fit test for normality', Communications in Statistics-Simulation and Computation . doi.org/10.1080/03610918.2019.1664580 [ Links ]
Torabi, H., Montazeri, N. H. & Grané, A. (2016), 'A test for normality based on the empirical distribution function', SORT 40(1), 55-88. [ Links ]
Received: June 2021; Accepted: February 2022