Vitamin D is a steroid hormone and a fat-soluble vitamin required by the human body for physiological bone and mineral metabolism 1. It plays a role in immune response regulation 2, among other functions. When vitamin D levels are low, its insufficiency or deficiency may contribute to various adverse health outcomes, from skeletal disorders such as rickets and osteomalacia to extraskeletal conditions like cancer, infections, and cardiovascular, autoimmune, and neuropsychiatric diseases 3. However, evidence of a causal effect is still scarce for many of these health problems.
The main source of vitamin D is sunlight. Pre-vitamin D3 is converted from 7-dehydrocholesterol by ultraviolet radiation (UVR) B in the skin and then transported to the liver and other tissues to be metabolized to 25-hydroxy-vitamin D (25OHD) -the major circulating form- by the enzyme CYP2R1. The 25OHD is then further metabolized to 1,25 dihydroxy-vitamin D (1,25(OH)2D), primarily in the kidney, by the enzyme CYP27B1. The 1,25(OH)2D is the active metabolite of vitamin D, responsible for most of its biological actions achieved via binding to a specific nuclear vitamin D receptor (VDR) and eliciting the transcriptional regulation of target genes. The inactivation and catabolism of 25OHD and 1,25(OH)2D are carried out by the enzyme CYP24A1. Circulation in the bloodstream of pre-vitamin D3 and vitamin D metabolites occurs using the vitamin D binding protein (VDBP) and albumin 4.
The US Endocrine Society has defined concentrations of 25OHD above 30 ng/ml as sufficient, between 20 and 30 ng/ml as insufficient, and below 20 ng/ml as deficient vitamin D levels, or their equivalent in nmol/L (1 ng/ml=2,5 nmol/L). Cut-off values may differ between studies depending on whether they follow the recommendations of the US Endocrine Society, the US Institute of Medicine (12 ng/ml and 20 ng/ml as the thresholds for deficiency and sufficiency, respectively), or the UK Scientific Advisory Committee (below 10 ng/ml is considered vitamin D deficiency) 1,5. The proposed minimum thresholds are defined by criteria including the suppression of parathyroid hormone secretion, increased calcium absorption, good musculoskeletal health, and reduced fractures and falls 1.
Identifying causal associations of vitamin D with disease using observational methods can be difficult because of confounding variables and other biases often afflicting these studies. Some reports devise Mendelian randomization as a method to improve causal inference in epidemiology by employing genetic variants strongly associated with an exposure, known in this context as instrumental variables, which are unlikely to suffer the same observational biases 6. Mendelian randomization has become quite popular in the last decade, clarifying cause-and-effect relationships between many risk factors and disease outcomes 7. However, this success has been limited to populations of European descent, where most research is conducted. For Mendelian randomization to be effectively applied in Brazil (and other non-European populations) we need to select genetic variants that are instrumental variables for exposures in the local populations.
For that reason, we investigated single nucleotide polymorphisms (SNPs) strongly associated with serum vitamin D, initially detected in Europeans, to assess whether they could be used as proxies for vitamin D in the Brazilian population to determine causal relationships between vitamin D levels and chronic diseases using Mendelian randomization.
Materials and methods
Single nucleotide polymorphisms associated with 25OHD (from now on, vitamin D) levels in blood were identified using the publicly available genome-wide association studies (GWAS) catalog 8. We generated a list of the top ~30 SNPs most strongly associated with vitamin D (with p-value < 5x10-8) and their corresponding genes. With this SNP list, we searched for scientific papers reporting the association of these SNPs or genes with vitamin D concentration in the Brazilian population. We consulted the databases of PubMed (9), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) (10), Scopus 11, Scientific Electronic Library Online (SciELO) (12), and Biblioteca Digital Brasileira de Teses e Dissertações (BDTD) 13. The search was carried out using the reference SNPs cluster ID (rsID) or the name of the gene where the SNPs is located, together with the terms "Brazil" and "vitamin D". In addition, we included SNPs located in the vitamin D receptor (VDR) gene, extensively studied in populations across the world. We selected studies where the association of genotypes with circulating vitamin D was ascertained and written in English, Portuguese, or Spanish.
From the chosen papers, we extracted the following information: SNPs effect on vitamin D levels, the effect allele, allele frequencies, sample size, prevalence of vitamin D deficiency and insufficiency, female percentage, mean age, white ethnicity percentage, study type, Hardy-Weinberg equilibrium test, adjustment for population stratification, and target population.
Results
Twenty-eight SNPs strongly associated with vitamin D in blood, mainly in European populations, were obtained from the GWAS catalog (table 1). Also, we considered 18 extra SNPs in the VDR gene (table 2).
Variant | Risk allele | p-value | Risk allele frequency (RAF) | Beta | 95%Cl | Mapped gene | Chr | Location (bp) GRCh38 | Study accession |
---|---|---|---|---|---|---|---|---|---|
rs145432346 | C | 7x10-286 | 0.826 | 0.108 unit increase | [0.10-0.11] | GC | 4 | 71709300 | GCST90019543 |
rs2282679 | C | 2x10-49 | 0.260 | 0.380 unit decrease | [0.32-0.44] | GC | 4 | 71742666 | GCST000664 |
rs2282679 | 2x10-14 | 0.290 | No data | No data | GC | 4 | 71742666 | GCST001560 | |
rs2282679 | T | 1x10-187 | No data | No data | No data | GC | 4 | 71742666 | GCST005366 |
rs2282679 | T | 4x10-63 | 0.770 | 16.628 (z-score) increase | No data | GC | 4 | 71742666 | GCST005782 |
rs2282679 | T | 5x10-62 | No data | No data | No data | GC | 4 | 71742666 | GCST005782 |
rs3755967 | T | 5x10-343 | No data | 0.089 unit decrease | [0.084-0.094] | GC | 4 | 71743681 | GCST005367 |
rs3755967 | 1x10-300 | No data | 0.206 unit decrease | [0.20-0.21] | GC | 4 | 71743681 | GCST90000618 | |
rs3755967 | T | 5x10-343 | No data | 0.089 unit decrease | [0.084-0.094] | GC | 4 | 71743681 | GCST90019526 |
rs3755967 | 1x10-300 | No data | 0.206 unit decrease | [0.20-0.21] | GC | 4 | 71743681 | GCST90019540 | |
rs11723621 | G | 3x10-1689 | 0.291 | 0.186 unit decrease | [0.18-0.19] | GC | 4 | 71749645 | GCST90019526 |
rs1352846 | A | 1x10-300 | 0.709 | 0.194 unit decrease | [0.19-0.20] | GC | 4 | 71752058 | GCST90019527 |
rs1352846 | G | 1x10-300 | 0.290 | 0.233 unit increase | [0.23-0.24] | GC | 4 | 71752058 | GCST90019528 |
rs1352846 | G | 1x10-300 | 0.290 | 0.188 unit increase | [0.18-0.20] | GC | 4 | 71752058 | GCST90019532 |
rs1352846 | A | 1x10-300 | 0.709 | 0.193 unit increase | [0.19-0.20] | GC | 4 | 71752058 | GCST90019534 |
rs1352846 | G | 1x10-297 | 0.290 | 0.121 unit decrease | [0.12-0.13] | GC | 4 | 71752058 | GCST90019541 |
rs4588 | T | 2x10-263 | 0.283 | 0.25 nmol/L decrease | [0.23-0.27] | GC | 4 | 71752606 | GCST90019546 |
rs7041 | C | 1x10-7 | 0.170 | 5.3 (z-score) increase | No data | GC | 4 | 71752617 | GCST005782 |
rs3775150 | C | 4x10-295 | 0.262 | 0.090 unit decrease | [0.086-0.096] | GC | 4 | 71775033 | GCST90019542 |
rs10832254 | G | 1x10-320 | 0.370 | 0.132 unit increase | [0.13-0.14] | RRAS2, COPB1 | 11 | 14413152 | GCST90019526 |
rs10832254 | G | 1x10-300 | 0.370 | No data | No data | RRAS2, COPB1 | 11 | 14413152 | GCST90019533 |
rs577185477 | C | 2x10-342 | 0.015 | 0.379 unit decrease | [0.36-0.40] | PSMA1 | 11 | 14591017 | GCST90019526 |
rs10832289 | T | 2x10-266 | 0.410 | 0.068 unit decrease | [0.065-0.072] | PDE3B | 11 | 14647950 | GCST90019545 |
rs188480917 | G | 5x10-275 | 0.011 | 0.343 unit decrease | [0.32-0.36] | PDE3B | 11 | 14764324 | GCST90019544 |
rs116970203 | No data | 1x10-300 | No data | 0.365 unit decrease | [0.35-0.38] | PDE3B | 11 | 14855172 | GCST90019529 |
rs116970203 | G | 1x10-300 | 0.973 | 0.376 unit increase | [0.36-0.39] | PDE3B | 11 | 14855172 | GCST90019535 |
rs116970203 | G | 1x10-300 | 0.973 | 0.377 unit decrease | [0.37-0.39] | PDE3B | 11 | 14855172 | GCST90019537 |
rs1894100 | 1x10-300 | No data | 0.102 unit decrease | [0.097-0.107] | ACTE1P | 11 | 14855172 | GCST90019530 | |
rs117913124 | A | 2x10-775 | 0.028 | 0.354 unit decrease | [0.34-0.37] | CYP2R1 | 11 | 14879385 | GCST90019526 |
rs12794714 | G | 1x10-300 | 0.578 | 0.0878 unit increase | [0.084-0.092] | CYP2R1 | 11 | 14892029 | GCST90019536 |
rs12794714 | G | 1x10-300 | 0.578 | 0.089 unit decrease | [0.085-0.093] | CYP2R1 | 11 | 14892029 | GCST90019538 |
rs10741657 | A | 2x10-38 | No data | No data | No data | CALCB, CYP2R1 | 11 | 14893332 | GCST005366 |
rs10741657 | A | 2x10-46 | No data | 0.031 unit increase | [0.027-0.035] | CALCB, CYP2R1 | 11 | 14893332 | GCST005367 |
rs10741657 | A | 2x10-6 | No data | No data | No data | CALCB, CYP2R1 | 11 | 14893332 | GCST005782 |
rs10741657 | A | 3x10-11 | 0.421 | 2.1 mmol/L increase | No data | CALCB, CYP2R1 | 11 | 14893332 | GCST012014 |
rs11023379 | 5x10-226 | No data | 0.065 unit decrease | [0.061-0.069] | CALCB | 11 | 14908414 | GCST90019549 | |
rs11233933 | 1x10-300 | No data | 0.115 unit decrease | [0.11-0.12] | NADSYN1 | 11 | 71419297 | GCST90019531 | |
rs12803256 | G | 9x10-407 | 0.771 | 0.100 unit increase | [0.096-0.105] | ACTE1P | 11 | 71421822 | GCST90019526 |
rs12803256 | A | 1x10-300 | 0.223 | 0.105 unit decrease | [0.10-0.11] | ACTE1P | 11 | 71421822 | GCST90019539 |
rs12785878 | T | 4x10-62 | No data | 0.0360 unit increase | [0.032-0.040] | NADSYN1 | 11 | 71456403 | GCST005367 |
rs12800438 | A | 1x10-16 | No data | No data | No data | NADSYN1 | 11 | 71459957 | GCST005782 |
rs4944957 | A | 1x10-16 | No data | No data | No data | NADSYN1 | 11 | 71459957 | GCST005782 |
rs12278461 | C | 5x10-228 | 0.210 | 0.129 unit decrease | [0.12-0.14] | NADSYN1 | 11 | 71471139 | GCST90019548 |
rs3829251 | A | 3x10-9 | 0.190 | 0.180 unit decrease | [0.12-0.24] | NADSYN1 | 11 | 71483513 | GCST000664 |
rs200454003 | T | 4x10-256 | 0.265 | 0.086 unit decrease | [0.082-0.092] | NADSYN1 | 11 | 71517944 | GCST90019547 |
rs10745742 | T | 1x10-7 | No data | No data | No data | AMDHD1 | 12 | 95964751 | GCST005366 |
rs10745742 | T | 2x10-20 | No data | 0.019 unit increase | [0.015-0.023] | AMDHD1 | 12 | 95964751 | GCST005367 |
rs17216707 | T | 1x10-14 | No data | No data | No data | CYP24A1, BCAS1 | 20 | 54115823 | GCST005366 |
rs17216707 | T | 8x10-23 | No data | 0.026 unit increase | [0.021-0.031] | CYP24A1, BCAS1 | 20 | 54115823 | GCST005367 |
rs17216707 | T | 6x10-48 | 0.817 | 0.038 unit decrease | [0.032-0.044] | CYP24A1, BCAS1 | 20 | 54115823 | GCST90000616 |
bp: base pairs; Chr: chromosome
Same single nucleotide polymorphisms identified in different studies are shown in colour.
Variant | Allele 1 | Allele 2 | Chromosome | Location (bp) GRCh38 | Gene position |
---|---|---|---|---|---|
rs9729 | C | A | 12 | 47842840 | 3’UTR |
rs739837 | G | T | 12 | 47844438 | 3’UTR |
rs731236 | G | A | 12 | 47844974 | Ile352Ile |
rs7975232 | C | A | 12 | 47845054 | intron |
rs1544410 | T | C | 12 | 47846052 | intron |
rs7963776 | G | A | 12 | 47849594 | intron |
rs7967152 | A | C | 12 | 47850401 | intron |
rs2189480 | G | T | 12 | 47870045 | intron |
rs2228570 | A | G | 12 | 47879112 | Met1Thr |
rs2853564 | C | T | 12 | 47884704 | intron |
rs7965274 | T | C | 12 | 47886384 | intron |
rs2853561 | C | T | 12 | 47887474 | intron |
rs10875694 | T | A | 12 | 47887877 | intron |
rs59128934 | G | T | 12 | 47891025 | intron |
rs11168287 | G | A | 12 | 47891631 | intron |
rs4328262 | G | T | 12 | 47891865 | intron |
rs4237855 | G | A | 12 | 47893420 | intron |
rs11568820 | A | G | 12 | 47908762 | - |
bp: base pairs
GC vitamin D binding protein gene
Vitamin D binding protein gene (GC) is located on chromosome 4q13.3 and encodes for the VDBP. Nine SNPs in this gene were among the 28 variants most robustly associated with serum vitamin D in previous GWAS (i.e. rs11723621, rs1352846, rs145432346, rs222020, rs2282679, rs3755967, rs3775150, rs4588, rs7041). Only rs2282679, rs4588, and rs7041 were analyzed in the Brazilian population (supplementary table 1). We found a total of six published studies in Brazil, three in Porto Alegre, the capital of the state of Rio Grande do Sul, and one each in the states of Rio de Janeiro, Paraná, and São Paulo. The target populations were diverse and involved women of reproductive age, university civil servants, and individuals affected by chronic diseases such as hepatitis C and cirrhosis, but their minor allele frequencies were quite similar (table 3).
PR: Paraná; RJ: Rio de Janeiro: RS: Rio Grande do Sul; SP: São Paulo
Overall, we uncovered evidence of the GC gene associated with vitamin D concentrations in Brazil, with the rs4588 A allele, the rs7041 T allele, and the rs2282679 C allele underlying lower vitamin D levels.
Vitamin D receptor gene (VDR)
Despite not being one of the genes identified in earlier GWAS as associated with vitamin D levels, the Vitamin D receptor gene (VDR) has been examined in numerous human groups, often in studies conducted before the GWAS era. Our literature search identified 12 publications assessing circulating vitamin D with VDR genotypes in Brazil (supplementary table 2). The SNPs rs1544410 (G/A), rs2228570 (C/T), rs731236 (T/C), and rs7975232 (T/G), formerly detected using the restriction enzymes BsmI, FokI, TaqI, and ApaI, respectively, were ascertained in most analyses, encompassing a variety of populations across the country (table 4). However, unlike what was observed with the GC gene, results were inconsistent in terms of the effect found or the direction of that effect. For instance, while the A allele of SNPs rs1544410 was associated with lower levels of vitamin D in young children from Acre 14, it increases vitamin D in girls 7-18 years old from south Brazil 15. The C allele at SNPs rs731236 was associated with higher serum vitamin D in girls from south Brazil and pregnant women from Bahia but appeared to have the opposite effect in type 1 diabetes patients from Pará state 16.
AC: Acre; BA: Bahia; MG: Minas Gerais; PA: Pará; PB: Paraíba; PR: Paraná; RS: Rio Grande do Sul; SP: São Paulo
n/a: not applicable
Other genes
We identified 25 SNPs in eight genes other than GC and VDR among the top predictors of vitamin D levels in the GWAS catalog. However, just four of these genes have been explored in Brazil (CYP2R1, CYP24A1, CYP27B1, NADSYN1 ) (supplementary table 3). Several polymorphisms in CYP2R1 and CYP24A1 were associated with serum vitamin D and vitamin D insufficiency in a study of ~800 young people from deprived areas in Salvador, Bahia 17. In contrast, smaller studies investigating the same genes, but different SNPs and populations did not find any effect 18-20.
Discussion
Despite the widespread availability of sunlight across Brazil and UVR levels ensuring vitamin D synthesis in the skin 21, numerous Brazilian studies report a high prevalence of vitamin D deficiency and insufficiency 22. Since 2017, the Sociedade Brasileira de Endocrinologia e Metabologia (SBEM) and the Sociedade Brasileira de Patologia Clínica/ Medicina Laboratorial(SBPC/ML) recommend a 25OHD level equal to or above 20 ng/ml for individuals up to 60 years old, and a range of 30 to 60 ng/ ml for at-risk groups 23. Considering other sources of vitamin D like diet and supplementation, vitamin D intake in Brazil is limited, food fortification is uncommon, and the use of vitamin D supplements (≤ 10%) is infrequent 23. To that extent, the SBEM only recommends supplementation for specific groups at risk of deficiency, for example, pregnant and lactating women, individuals with osteoporosis, elderly people, and patients with conditions that affect vitamin D metabolism 24.
In general, our findings showed limited local research on the genetic determinants of vitamin D levels, with a predilection towards investigating the VDR gene, but with sounder evidence accumulating on the effects of the GC gene. This observation agrees with the GWAS data indicating that GC, the gene that encodes for the binding protein, is among the dominant genetic predictors of vitamin D concentrations in European, Asian, and African-ancestry populations 25-30. Conversely, a look-up of VDR in the GWAS catalog returned associations with different traits but not with vitamin D levels (supplementary table 4).
Brazil needs to conduct more research to confirm the role of GC (and clarify the one of VDR) and to reveal other genetic variants robustly associated with serum vitamin D. The identification of reliable proxies will allow us to establish causal associations with disease and promote the use of appropriate polygenic risk scores for predictive purposes.
Additionally, we would like to suggest a few improvements to future studies, especially to use them as the basis for meta-analyses. For example, it is important to describe all findings (significant and non-significant) and to provide them as supplementary material, if necessary, assess Hardy-Weinberg equilibrium and report test results, and, given Brazil's admixed genetic background, adjust for markers of population stratification or related variables (e.g., race/ethnicity, socioeconomic status) when these are unavailable.
Among the limitations of our study, there is still the chance that we have missed relevant publications not covered by our search parameters, or SNPs associated with vitamin D in the GWAS catalog, outside the top 30, with reports in Brazilian populations, although this is rather unlikely. In addition, given the limited number of studies found and the heterogeneity of the included samples, it was not possible to run a meta-analysis to obtain an indication of the strength and direction of the effect of GC variants on the levels of vitamin D, making unfeasible the implementation of any action in clinical practice linked to our results.
In conclusion, there is a lot of interest in vitamin D as a potential risk factor for several chronic diseases of public health impact. Therefore, it is essential to identify causal relationships between vitamin D levels and disease outcomes. One way of improving causal inference would be to apply Mendelian randomization, which uses genetic variants to proxy or instrument the exposure (e.g., serum vitamin D) to obtain unbiased estimates of these relationships. However, the instruments should be appropriate for the study population, either having been discovered or validated locally. We noticed insufficient research in Brazil (and South America) on vitamin D proxies, with existing studies focusing on the VDR as a genetic risk factor for disease, which may or may not produce changes in circulating vitamin D.
Supplementary archives
study | database | authors | acess link | population | region/city/town | gene | SNP | effect or minor allele | effect or minor allele frequency | prevalence of vitamin D deficiency (95% CI) | prevalence of vitamin D insuficiency (%) | p-value | 25OHD (ng/ml) mean ± sd | p-value | beta 25OHD (ng/ml) | CI 95%/se | p-value | OR | CI 95% | p-value | DBP (ug/ml) | p-value | N | age (years) mean ± sd (range) | % female | ethnicity (% whites) | Hardy-Weinberg equilibrium (p-value) | correction for population stratification | type of study | comments |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genetic, sociodemographic and lifestyle factors associated with serum 25-hydroxyvitamin D concentrations in Brazilian adults: the Pró-Saúde Study | PUBMED | Bezerra et al. (2022) | https://pubmed.ncbi.nlm.nih.gov/35043885/ | university civil servants | Rio de Janeiro, RJ | GC | rs2282679 | C | 0,222 | 55,0 | <0.001 | 48.0 ± 19.1 nmol/l | <0.001 | 491 | 45-54 (43.8%) | 51,1 | in equilibrium | no | cross-sectional | |||||||||||
CC | 65,4 | 38.6 (27.2) | -10,63 | (-17.52, -3.74) | ||||||||||||||||||||||||||
CA | 65,7 | 44.4 (21.9) | -6,84 | (-10.09, -3.59) | ||||||||||||||||||||||||||
AA | 48,2 | 50.3 (28.3) | reference | |||||||||||||||||||||||||||
Genetic polymorphisms related to the vitamin D pathway in patients with cirrhosis with or without hepatocellular carcinoma (HCC) | PUBMED | Brait et al. (2022) | https://pubmed.ncbi.nlm.nih.gov/35919232/ | patients with cirrhosis & controls | São Jose do Rio Preto, SP | GC | rs4588; rs7041 | A; G | rs4588 A: 0.30 cases/0.28 controls | 30.0 cases/35.0 controls | 383 | 16-81; 20-84 | 21.5; 43.6 | in equilibrium in both cirrhosis cases and controls | no | case-control | reduced levels of vitamin D in cases showed association with genotypes with at least one mutant allele (_/A) for GC-rs4588 (77.8%) compared to controls (14.3%; p = 0.0406). | |||||||||||||
rs7041 G: 0.46 cases/0.51 controls | ||||||||||||||||||||||||||||||
Effect of vitamin D serum levels and GC gene polymorphisms in liver fibrosis due to chronic hepatitis C | PUBMED | Azevedo et al. (2017) | https://pubmed.ncbi.nlm.nih.gov/28809744/ | adult patients with chronic hepatitis C genotype 1 | Porto Alegre, RS | GC | rs4588; rs7041 | T; C | 0.213; 0.461 | 50,0 | 27,3 | 0,02 | 19.9 (14.0-29.4) | 132 | 53 (± 9) | 46,2 | in equilibrium | no | cross-sectional | 25OHD levels differences between haplotypes too. | ||||||||||
rs4588 | GG + GT | 20.2 (15.8-29.8) | 0,023 | |||||||||||||||||||||||||||
TT | 9.6 (8.1-20.9) | |||||||||||||||||||||||||||||
rs7041 | CC + CA | 22.8 (16.2-30.1) | 0,026 | |||||||||||||||||||||||||||
AA | 17.0 (8.9-26.6) | |||||||||||||||||||||||||||||
Prevalence of vitamin D deficiency in women from southern Brazil and association with vitamin D-binding protein levels and GC-DBP gene polymorphisms | PUBMED | Santos et al. (2019) | https://pubmed.ncbi.nlm.nih.gov/31830090/ | women with no evidence of clinical disease | Porto Alegre, RS | GC | rs4588; rs7041; rs2282679 | A; G; C | 0.293; 0.484; 0.283 | 39,7 | 22.80 (± 8.32) | 443 | 53.4 (± 9.4) | 100 | 80 | 0.23, 0.09, 0.68 | no | cross-sectional | ||||||||||||
rs4588 | CC | 23.00 ± 8.84 | 0,282 | -0,6 | 202.98 ± 28.28 | < 0.001 | ||||||||||||||||||||||||
CA | 23.16 ± 7.83 | 196.49 ± 29.88 | ||||||||||||||||||||||||||||
AA | 20.77 ± 7.16 | 183.95 ± 36.85 | ||||||||||||||||||||||||||||
rs7041 | TT | 21.48 ± 7.54 | 0,030 | 1.2 | 192.96 ± 33.41 | 0,078 | ||||||||||||||||||||||||
TG | 23.20 ± 8.25 | 201.38 ± 28.06 | ||||||||||||||||||||||||||||
GG | 23.78 ± 9.14 | 199.82 ± 30.02 | ||||||||||||||||||||||||||||
rs2282679 | AA | 23.39 ± 8.79 | 0,034 | -1,3 | 1,00 | 203.13 ± 27.90 | < 0.001 | |||||||||||||||||||||||
AC | 22.83 ± 7.81 | 0,981 | (0.758; 1.269) | 0,884 | 196.41 ± 30.04 | |||||||||||||||||||||||||
CC | 19.70 ± 7.17 | 1,740 | (1.301; 2.237) | <0.001 | 180.88 ± 38.20 | |||||||||||||||||||||||||
Genetic variant in vitamin D-binding protein is associated with metabolic syndrome and lower 25-hydroxyvitamin D levels in polycystic ovary syndrome: A cross-sectional study | PUBMED | Santos et al. (2017) | https://pubmed.ncbi.nlm.nih.gov/28278285/ | women of reproductive age | Porto Alegre, RS | GC | rs4588; rs7041; rs2282679 | A; G; C | 0.230; 0.535; 0.225 | 42,2 | 45,1 | 21.48 ± 7.25; 21.50 ± 6.90 | 291 (191 PCOS + 100 controls)/102 (54 PCOS + 48 controls) with 25OHD levels | 22.89 ± 6.66 PCOS/25.18 ± 7.72 controls | 100 | 93.9 | in equilibrium in both PCOS and control groups | no | cross-sectional | LD rs4588 & rs7041 r2 = 0.44 | ||||||||||
rs4588 | CC | 0,542 | ||||||||||||||||||||||||||||
CA + AA | ||||||||||||||||||||||||||||||
rs7041 | TT | 69,6 | 0,002 | |||||||||||||||||||||||||||
TG + GG | exact value not available | |||||||||||||||||||||||||||||
rs2282679 | AA | 0,542 | ||||||||||||||||||||||||||||
AC + CC | ||||||||||||||||||||||||||||||
Variations in the vitamin D-binding protein (DBP) gene are related to lower 25-hydroxyvitamin d levels in healthy girls: a cross-sectional study | PUBMED | Santos et al. (2013) | https://pubmed.ncbi.nlm.nih.gov/23548751/ | healthy female students | Curitiba, PR | GC | rs4588; rs7041 | A; G | 0.267; 0.485 | 22.1 ± 5.9 | 198 | 13.17 ± 1.74 | 100 | in equilibrium | no | cross-sectional | LD rs4588 & rs7041 r2 = 0.38 | |||||||||||||
rs4588 | CC | 0,030 | -1,65 | 0,012 | 2,73 | (0.94; 7.93) | A allele | 25OHD levels differences between haplotypes too. | ||||||||||||||||||||||
CA | ||||||||||||||||||||||||||||||
AA | ||||||||||||||||||||||||||||||
rs7041 | TT | 0,010 | -1,74 | 0,002 | 3,47 | (1.45; 8.27) | T allele | |||||||||||||||||||||||
TG | ||||||||||||||||||||||||||||||
GG |
Study | Database | Authors | Access link | Population | Region/city/town | Gene | SNP | Effect or minor allele | Effect or minor allele frequency | Prevalence of vitamin D deficiency (95% CI) | p-value | Prevalence of vitamin D insuficiency (%) | p-value | 25OHD (ng/ml) mean ± sd | p-value | N | Age (years) mean ± SD (range) | % female | Ethnicity (% white) | Beta 25OHD (ng/mL) | 95% CI/SE | p-value | OR | CI 95% | p-value | Hardy-Weinberg equilibrium (p-value) | Correction for population stratification | Type of study | Comments |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vitamin D deficiency is a risk factor for delayed tooth eruption associated with persistent primary tooth (PPT) | PUBMED | Xavier et al. (2021) | https://pubmed.ncbi.nlm.nih.gov/33944665/ | children with primary teeth with exfoliation time expired for more than a year (persistent primary tooth) and children with regular primary teeth exfoliation time (controls) | Riberao Preto, SP | VDR | rs2228570; rs739837 | A; G | 26.7 PPT/0.0 controls | 14.2-37.4 PPT/21.9-48.2 controls | 30 (15 PPT + 15 controls) | 9.4 ± 1.8 | 43,3 | not reported | no | case-control | data showed no association between genetic polymorphisms in VDR and serum 25OHD levels (p>0.05). | ||||||||||||
rs2228570 | A | 0.269 controls/0.350 PPT; 0.379 controls/0.296 DTE | |||||||||||||||||||||||||||
rs739837 | G | 0.500 controls/0.400 PPT; 0.366 controls/0.417 DTE | |||||||||||||||||||||||||||
Genetic polymorphisms in vitamin D pathway infuence 25(OH)D levels and are associated with atopy and asthma | PUBMED | Galvão et al (2020) | https://pubmed.ncbi.nlm.nih.gov/32834827/ | SCAALA cohort (children from deprived areas) | Salvador, BA | VDR | rs10875694; rs11168287; rs2189480; rs2853561; rs2853564; rs4237855; rs4328262; rs59128934; rs739837; rs7963776; rs7965274; rs7967152; rs9729 | G; C; G; G; G; G; T; A; C | 20,8 | 40,7 | 27.33 ± 9.60 | 792 | (11-19) | 47,6 | in equilibrium | individual genetic ancestry using 269 AIMs | cross-sectional nested in cohort | write to them to ask the DBP (GC) SNPs vs 25OHD levels. | |||||||||||
rs11168287 | G | 0,377 | 0,78 | 0.63, 0.97 | 0,028 | ||||||||||||||||||||||||
rs2853564 | C | 0,177 | 1,30 | 1.00, 1.70 | 0,049 | ||||||||||||||||||||||||
rs4237855 | G | 0,323 | 0,79 | 0.63, 0.99 | 0,038 | ||||||||||||||||||||||||
rs59128934 | G | 0,041 | 2,07 | 1.28, 3.34 | 0,002 | ||||||||||||||||||||||||
rs739837 | G | 0,484 | 0,78 | 0.63, 0.96 | 0,019 | ||||||||||||||||||||||||
rs7963776 | G | 0,474 | 0,79 | 0.64, 0.98 | 0,029 | ||||||||||||||||||||||||
rs7965274 | T | 0,180 | 1,31 | 1.01, 1.70 | 0,044 | ||||||||||||||||||||||||
rs7967152 | A | 0,461 | 0,77 | 0.62, 0.95 | 0,013 | ||||||||||||||||||||||||
rs9729 | C | 0,480 | 0,78 | 0.70, 0.96 | 0,017 | rs9729 C allele increases VDR expression (p = 0.0007) in GTEx. Rs9729 is in strong LD with rs731236 (TaqI). | |||||||||||||||||||||||
rs59128934 | G | 0,057 | 1,78 | 1.12, 2.83 | 0,014 | ||||||||||||||||||||||||
Variants rs1544410 and rs2228570 of the vitamin D receptor gene and glycemic levels in adolescents from Northeast Brazil | PUBMED | Neves et al. (2019) | https://pubmed.ncbi.nlm.nih.gov/31718198/ | adolescents who did not present any chronic disease | João Pessoa, PB | VDR | rs1544410; rs2228570 | B = A; f = T | 0.395; 0.332 | 50,0 | 28.0 (28.4-30.7) | 208 | 17.7 (± 1.14) | 62,5 | rs1544410 out of HWE (calculated by us) | no | cross-sectional | ||||||||||||
rs1544410 | BB = AA | 31.23 (9.35) | 0,281 | 47 | 1,72 | 0.84, 3.50 | 0,134 | ||||||||||||||||||||||
Bb = GA | 29.12 (7.80) | 70 | 1,01 | 0.54, 1.90 | 0,967 | ||||||||||||||||||||||||
bb = GG | 29.01 (7.90) | 91 | 1,00 | ||||||||||||||||||||||||||
rs2228570 | FF = CC | 29.23 (7.76) | 0,840 | 92 | |||||||||||||||||||||||||
Ff = TC | 30.03 (9.06) | 94 | |||||||||||||||||||||||||||
ff = TT | 28.81 (6.90) | 22 | |||||||||||||||||||||||||||
Polymorphism in the vitamin D receptor gene is associated with maternal vitamin D concentration and neonatal outcomes: A Brazilian cohort study | PUBMED | Pereira Santos et al. (2019) | https://pubmed.ncbi.nlm.nih.gov/31070844/ | pregnant women who lived in the urban area of the municipality and received prenatal services | Santo Antônio de Jesus, BA | VDR | rs731236; rs7975232 | G; C | 0.300; 0.400 | 23,0 | 43,0 | 72.62 ± 31.51 nmol/l | 270 | 26.73 ± 5.85 | 100 | 18,15 | nmol/L | 0.24; 0.94 | no | prospective cohort | |||||||||
rs731236 | GG vs AA | 14,09 | 0.85, 27.34 | 0,03 | |||||||||||||||||||||||||
rs7975232 | CC vs AA | 1,15 | (-10.28, 12.59) | 0,84 | |||||||||||||||||||||||||
Association of vitamin D3, VDR gene polymorphisms. and LL-37 with a clinical form of Chagas Disease | SciELO | Junior et al. (2019) | https://www.scielo.br/j/rsbmt/a/z7QwDmFg7Ndz6RxRtbJG8SK/?lang=en | adult male patients with indeterminate and cardiac form of chronic Chagas Disease (CD) | Botucatu, SP | VDR | rs1544410; rs2228570; rs731236; rs7975232 | 0.40; 0.44; 0.26; 0.31 | 10,9 | 53,1 | 0.207; 0.767; 0.617; 0.837 | 29.3 ± 5.8; 25.4 ± 7.3 | 64 (46 indeterminate + 18 cardiac) | 60.3 ± 8.1; 62.2 ± 11.0 | 0 | 76,6 | not reported | no | cross-sectional | ||||||||||
Apa-I polymorphism in VDR gene is related to metabolic syndrome in polycystic ovary syndrome: a cross-sectional study | PUBMED | Santos et al. (2018) | https://pubmed.ncbi.nlm.nih.gov/29669566/ | patients with polycystic ovary syndrome (PCOS) + non-hirsute women with regular ovulatory cycles | Porto Alegre, RS | VDR | rs1544410; rs731236; rs7975232 | A; G; C | 0.400/0.350; 0.396/0.354; 0.447/0.400 | 21.47 ± 7.61; 21.50 ± 6.90 | 291 (191 PCOS + 100 controls) | 22.89 ± 6.66; 25.18 ± 7.72 | in equilibrium | cross-sectional | |||||||||||||||
rs7975232 | AA + CA | 21.52 ± 7.16 | 0,399 | ||||||||||||||||||||||||||
CC | 21.31 ± 6.15 | as | |||||||||||||||||||||||||||
Mutações do gene receptor da vitamina D e níveis séricos de vitamina D em crianças com asma | SciELO | Santos et al. (2018) | https://www.scielo.br/j/rpp/a/wVLMgrfnLrBbDVsCdLFcvCJ/?lang=pt | children aged 7 to 14 years (asthmatics and non-asthmatics) | Curitiba, PR | VDR | Cdx2 (rs11568820?) | G | 0.714 (0.716 asthmatics/0.705 non-asthmatics) | 98,0 | 77 (60 asthmatic + 17 non-asthmatic) | 10.8 ± 2.2 | 43,0 | not reported | no | cross-sectional | There was no association between vitamin D, PTH or calcium levels with any of the polymorphisms studied. | ||||||||||||
Genetic polymorphisms of vitamin D metabolism genes and serum level of vitamin D in colorectal cancer | PUBMED | Vidigal et al. (2017) | https://pubmed.ncbi.nlm.nih.gov/28665452/ | colorectal cancer cases & controls | São Paulo, SP | VDR | rs1544410; rs7975232 | 51.0; 43.3 | 18.4; 26.6 | 26.4 ± 17.6; 28.4 ± 19.2 | 473 (152 CRC + 321 controls) | 62.8 ± 13.0; 62.7 ± 10.4 | 46.7; 49.2 | not reported | no | case-control | |||||||||||||
rs1544410 | AA | 29.5; 24.4 | 0,482 | ||||||||||||||||||||||||||
Aa + aa | 27.1; 28.3 | 0,074 | |||||||||||||||||||||||||||
rs7975232 | BB | 32.5; 23.2 | 0,216 | ||||||||||||||||||||||||||
Bb + bb | 27.1; 27.5 | 0,155 | |||||||||||||||||||||||||||
25-hydroxyvitamin D3 levels, BsmI polymorphism and insulin resistance in Brazilian Amazonian children | PUBMED | Cobayashi et al. (2015) | https://pubmed.ncbi.nlm.nih.gov/26047339/ | children aged ≤ 10 years | Acrelândia, AC | VDR | rs11568820; rs1544410; rs2228570; rs731236; rs7975232 | A; T; A; G; C | 0.399; 0.406; 0.299; 0.396; 0.431 | 11.1 (9.2-13.2) | 21.8 (19.2-24.5) | 66 (86-105) | 1225 (974 with 25OHD levels) | 5.4 ± 2.8 (2.8 months-10.4 years) | 49,0 | 10,3 | 0.007; 0.100 | HWE was tested, results not reported. | adjusted for race/ethnicity | ||||||||||
rs1544410 | T | -0,070 | -0.132. -0.008 | 0,026 | |||||||||||||||||||||||||
rs1544410 | T | -0,053 | -0.100. -0.006 | 0,025 | adjusted for sex, age, race/ethn | ||||||||||||||||||||||||
Vitamin D deficiency in girls from South Brazil: a cross-sectional study on prevalence and association with vitamin D receptor gene variants | PUBMED | Santos et al (2012) | https://pubmed.ncbi.nlm.nih.gov/22681928/ | healthy girls | Curitiba, PR/Porto Alegre, RS | VDR | rs1544410; rs731236; rs7975232 | A; C; G | 36,3 | 54,3 | 21.3 ± 6.8 | 234 | 13.0 ± 1.9 (7-18) | 100,0 | in equilibrium | no | cross-sectional | LD: rs1544410 & rs7975232 r2=0.330/rs1544410 & rs731236 r2=0.807/rs7975232 & rs731236 r2=0.319 | |||||||||||
rs1544410 | A | 0,323 | GA + AA vs GG | 0,014 | 3,114 | 0,881 | < 0.001 | 1,96 | 1.14, 3.37 | there were differences in serum 25OHD levels by haplotype as well | |||||||||||||||||||
rs731236 | C | 0,314 | TC + CC vs TT | 0,034 | 2,505 | 0,890 | 0,005 | 1,78 | 1.04, 3.06 | ||||||||||||||||||||
rs7975232 | G | 0,429 | GT + TT vs GG | 0,078 | 2,575 | 1,189 | 0,031 | 0.27, 1.08 | |||||||||||||||||||||
Variants in the VDR gene may influence 25(OH)D levels in type 1 diabetes mellitus in a Brazilian population | Ferraz et al. (2022) | https://pubmed.ncbi.nlm.nih.gov/35267984/ | T1D patients & controls | Belém, PA | VDR | rs1544410; rs2228570; rs731236; rs7975232 | A; T; C; T | na/na; 0.308/0.331; 0.315/0.283; 0.638/0.554 | 26.04 ± 8.45; 32.60 ± 8.85 | 148 (65 T1D + 83 controls) | 27.3 ± 10.4; 38.5 ± 13.6 | 53.9; 77.1 | in equilibrium in both cases and controls | 61 AIMs used to estimate individual ancestry but no correction made | case-control | ||||||||||||||
rs1544410 | AA | lower levels than GG + GA | < 0.05 | ||||||||||||||||||||||||||
rs2228570 | TT | higher levels than CC + CT | < 0.05 | ||||||||||||||||||||||||||
rs731236 | CC | lower levels than TT + TC | < 0.05 | ||||||||||||||||||||||||||
rs7975232 | n.s | ||||||||||||||||||||||||||||
Lower vitamin D levels, but not VDR polymorphisms, influence type 2 diabetes mellitus in Brazilian population independently of obesity | Rodrigues et al. (2019) | https://pubmed.ncbi.nlm.nih.gov/31121922/ | T2D patients & controls | Belo Horizonte, MG | VDR | rs1544410; rs2228570; rs731236; rs7975232 | A; T; C; C | 0.401/0.411; 0.245/0.306; 0.332/0.403; 0.245/0.210 | 59.7; 12.0 | 17.2 ± 16.6; 30.8 ± 16.2 | 163 (101 T2D + 62 controls) | 56 ± 13; 53 ± 18 | 81.0 (81.2; 80.6) | all > 0.025 | no | case-control | |||||||||||||
rs1544410 | AA | 26.0 (37.6) | 0,415 | ||||||||||||||||||||||||||
AG | 24.8 (18.5) | ||||||||||||||||||||||||||||
GG | 21.2 (19.3) | ||||||||||||||||||||||||||||
rs2228570 | TT | 23.2 (20.2) | 0,764 | ||||||||||||||||||||||||||
TC | 27.4 (24.5) | ||||||||||||||||||||||||||||
CC | 22.9 (35.2) | ||||||||||||||||||||||||||||
rs731236 | CC | 20.3 (30.3) | 0,222 | ||||||||||||||||||||||||||
CT | 25.6 (23.3) | ||||||||||||||||||||||||||||
TT | 21.4 (19.3) | ||||||||||||||||||||||||||||
rs7975232 | AA | 24.7 (22.7) | 0,656 | ||||||||||||||||||||||||||
AC | 25.2 (17.5) | ||||||||||||||||||||||||||||
CC | 17.9 (29.9) |
study | database | authors | acess link | population | region/city/town | gene | SNP | effect or minor allele | effect or minor allele frequency | prevalence of vitamin D deficiency (95% CI) | prevalence of vitamin D insuficiency (%) | p-value | 25OHD (ng/ml) mean ± sd | p-value | beta 25OHD (ng/ml) | CI 95%/se | p-value | OR | CI 95% | p-value | N | age (years) mean ± sd (range) | % female | ethnicity (% whites) | Hardy-Weinberg equilibrium (p-value) | correction for population stratification | type of study | comments |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genetic, sociodemographic and lifestyle factors associated with serum 25-hydroxyvitamin D concentrations in Brazilian adults: the Pró-Saúde Study | PUBMED | Bezerra et al. (2022) | https://pubmed.ncbi.nlm.nih.gov/35043885/ | university civil servants | Rio de Janeiro, RJ | CYP2R1; NADSYN1; CYP24A1 | rs10741657; rs12785878; rs6013897 | G; T; T | 55,0 | 48.0 ± 19.1 nmol/l | 491 | 45-54 (43.8%) | 51,1 | rs12785878 & rs6013897 in HWD and not analysed | no | cross-sectional | ||||||||||||
rs10741657 | G | 0,705 | 0,119 | median (IQR) | 0,118 | |||||||||||||||||||||||
GG | 59,2 | 46.0 (25.6) | ||||||||||||||||||||||||||
GA | 49,5 | 50.0 (28.3) | ||||||||||||||||||||||||||
AA | 56,8 | 49.5 (22.8) | ||||||||||||||||||||||||||
Genetic polymorphisms in vitamin D pathway infuence 25(OH)D levels and are associated with atopy and asthma | PUBMED | Galvão et al (2020) | https://pubmed.ncbi.nlm.nih.gov/32834827/ | SCAALA cohort (children from deprived areas) | Salvador, BA | CYP2R1; CYP24A1 | rs10500804, rs12794714; rs2245153, rs34043203, rs3886163, rs4809960, rs56229249 | G, A; C, A, T, C, G | 27.33 ± 9.60 | 792 | (11-19) | 47,6 | in equilibrium | individual genetic ancestry using 269 AIMs | cross-sectional nested in cohort | write to them to ask the DBP (GC) SNPs vs 25OHD levels. | ||||||||||||
CYP2R1 | rs10500804 | G | -1,37 | (-2.40, 0.35) | 0,009 | 1,40 | 1.11, 1.77 | 0,006 | ||||||||||||||||||||
GG | 22.25 ± 9.31 | 0,043 | ||||||||||||||||||||||||||
GT | 25.67 ± 9.25 | |||||||||||||||||||||||||||
TT | 26.68 ± 9.79 | |||||||||||||||||||||||||||
CYP2R1 | rs12794714 | A | -1,38 | (-2.40, 0.35) | 0,009 | 1,41 | 1.11, 1.79 | 0,005 | ||||||||||||||||||||
AA | 24.56 ± 9.28 | 0,058 | ||||||||||||||||||||||||||
AG | 26.67 ± 9.26 | |||||||||||||||||||||||||||
GG | 27.66 ± 9.73 | |||||||||||||||||||||||||||
CYP24A1 | rs2245153 | C | 0,79 | 0.63, 0.99 | 0,042 | |||||||||||||||||||||||
CYP24A1 | rs34043203 | A | 1,49 | 1.00, 2.22 | 0,049 | |||||||||||||||||||||||
CYP24A1 | rs3886163 | T | -1,48 | (-2.77, 0.18) | 0,026 | 1,44 | 1.05, 1.99 | 0,025 | ||||||||||||||||||||
TT | 24.49 ± 8.20 | 0,094 | ||||||||||||||||||||||||||
TC | 25.72 ± 10.00 | |||||||||||||||||||||||||||
CC | 27.41 ± 9.42 | |||||||||||||||||||||||||||
CYP24A1 | rs4809960 | C | 0,69 | 0.53, 0.91 | 0,008 | |||||||||||||||||||||||
CYP24A1 | rs56229249 | G | 1,42 | 1.04, 1.94 | 0,028 | |||||||||||||||||||||||
Genetic polymorphisms related to the vitamin D pathway in patients with cirrhosis with or without hepatocellular carcinoma (HCC) | PUBMED | Brait et al. (2022) | https://pubmed.ncbi.nlm.nih.gov/35919232/ | patients with cirrhosis & controls | São Jose do Rio Preto, SP | CYP24A1 | rs6013897 | T | 0.72; 0.70 | 30.0; 35.0 | 383 | 16-81; 20-84 | 21.5; 43.6 | in equilibrium | no | case-control | no association with vitamin D levels | |||||||||||
Genetic polymorphisms of vitamin D metabolism genes and serum level of vitamin D in colorectal cancer | PUBMED | Vidigal et al. (2017) | https://pubmed.ncbi.nlm.nih.gov/28665452/ | colorectal cancer cases & controls | São Paulo, SP | CYP24A1; CYP27B1 | rs158552; rs17217119; rs6013897; rs10877012 | T; A; T; G | 51.0; 43.3 | 18.4; 26.6 | 26.4 ± 17.6; 28.4 ± 19.2 | 473 (152 CRC + 321 controls) | 62.8 ± 13.0; 62.7 ± 10.4 | 46.7; 49.2 | not reported | no | case-control | |||||||||||
rs158552 | TT | 25.7; 28.4 | 0,199 | |||||||||||||||||||||||||
TC + CC | 29.7; 25.3 | 0,385 | ||||||||||||||||||||||||||
rs17217119 | AA | 25.8; 25.6 | 0,247 | |||||||||||||||||||||||||
AG + GG | 29.9; 24.7 | 0,660 | ||||||||||||||||||||||||||
rs6013897 | TT | 26.9; 26.2 | 0,493 | |||||||||||||||||||||||||
TA + AA | 29.0; 26.3 | 0,958 | ||||||||||||||||||||||||||
rs10877012 | GG | 30.2; 26.2 | 0,047 | |||||||||||||||||||||||||
GT + TT | 24.0; 28.2 | 0,381 |
Beta | CI | Mapped gene | Reported trait | Trait(s) | Study accession | Location |
---|---|---|---|---|---|---|
0.063426755 unit decrease | [0.042-0.085] | VDR | basal cell carcinoma | basal cell carcinoma | GCST90013410 | 12:47844438 |
0.0481096 unit increase | [0.033-0.064] | VDR | total testosterone levels | testosterone measurement | GCST90012112 | 12:47860570 |
0.13136138 unit increase | [0.088-0.175] | VDR | medication use (diuretics) | Diuretic use measurement | GCST007928 | 12:47860570 |
0.3943 unit increase | [0.28-0.51] | VDR | diastolic blood pressure | diastolic blood pressure | GCST90132904 | 12:47860570 |
0.1314 unit increase | [0.088-0.175] | VDR | medication use (diuretics) | diuretic use measurement | GCST90018985 | 12:47860570 |
VDR | cardiovascular disease | cardiovascular disease | GCST007072 | 12:47860570 | ||
VDR | gout | gout | GCST001356 | 12:47862166 | ||
0.32741 unit increase | [0.18-0.47] | VDR | COVID-19 (hospitalized vs not hospitalized) | COVID-19 | GCST90104752 | 12:47873551 |
0.75 percent increase | VDR | gut microbiota (beta diversity) | gut microbiome measurement | GCST003876 | 12:47876015 | |
VDR | eosinophil counts | eosinophil count | GCST007065 | 12:47879112 | ||
0.0138518615 unit increase | [0.0094-0.0183] | VDR | eosinophil percentage of white cells | eosinophil percentage of leukocytes | GCST90002382 | 12:47879112 |
47.572 unit increase | VDR | serum immune biomarker levels | inflammatory biomarker measurement, YKL40 measurement | GCST010146 | 12:47914289 | |
0.9905315 unit decrease | VDR | sphingomyelin (d32:2) levels | sphingomyelin measurement | GCST90094889 | 12:47919236 | |
0.57862 unit increase | [0.33-0.83] | VDR | S-6-hydroxywarfarin levels | S-6-hydroxywarfarin measurement | GCST90129565 | 12:47920142 |
0.86594 unit increase | [0.52-1.21] | VDR | R-6-hydroxywarfarin to R-warfarin ratio | R-6-hydroxywarfarin to R-warfarin ratio measurement | GCST90129572 | 12:47927031 |
VDR | adolescent idiopathic scoliosis | adolescent idiopathic scoliosis | GCST006287 | 12:47927916 | ||
VDR, TMEM106C | heel bone mineral density | heel bone mineral density | GCST007066 | 12:47943286 | ||
0.0304 unit increase | [0.024-0.037] | VDR, TMEM106C | glycated hemoglobin levels | HbA1c measurement | GCST90019509 | 12:47943286 |
0.0541 unit decrease | [0.038-0.07] | TMEM106C, VDR | glycated hemoglobin levels | HbA1c measurement | GCST90019509 | 12:47943734 |
0.049543403 unit increase | [0.032-0.067] | VDR, TMEM106C | medication use (calcium channel blockers) | calcium channel blocker use measurement | GCST007929 | 12:47944639 |
TMEM106C, VDR | red blood cell count | erythrocyte count | GCST007069 | 12:47952685 | ||
0.015703138 unit increase | [0.011-0.02] | VDR, TMEM106C | lymphocyte percentage of white cells | lymphocyte percentage of leukocytes | GCST90002389 | 12:47963231 |