SciELO - Scientific Electronic Library Online

 
vol.44 issue1Incidence of metabolic bone disease in neonates under 32 gestational weeks at the Hospital Universitario de Santander in ColombiaGenomic epidemiology of SARS-CoV-2 δ sublineages of the second wave of 2021 in Antioquia, Colombia author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Biomédica

Print version ISSN 0120-4157On-line version ISSN 2590-7379

Biomed. vol.44 no.1 Bogotá Jan./Mar. 2024  Epub Mar 31, 2024

https://doi.org/10.7705/biomedica.6972 

Original articles

Vitamin D-associated genetic variants in the Brazilian population: Investigating potential instruments for Mendelian randomization

Variantes genéticas asociadas con la vitamina D en la población brasileña: investigación de potenciales instrumentos para aleatorización mendeliana

Caroline de Souza Silverio1  2 

Carolina Bonilla1  * 

1 Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil

2 Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brasil


Abstract

Introduction.

Vitamin D is required for bone and mineral metabolism and participates in the regulation of the immune response. It is also linked to several chronic diseases and conditions, usually in populations of European descent. Brazil presents a high prevalence of vitamin D deficiency and insufficiency despite the widespread availability of sunlight in the country. Thus, it is important to investigate the role of vitamin D as a risk factor for disease and to establish causal relationships between vitamin D levels and health-related outcomes in the Brazilian population.

Objective.

To examine genetic variants identified as determinants of serum vitamin D in genome-wide association studies of European populations and check whether the same associations are present in Brazil. If so, these single nucleotide polymorphisms (SNPs) could be developed locally as proxies to use in genetically informed causal inference methods, such as Mendelian randomization.

Materials and methods.

We extracted SNPs associated with vitamin D from the genome-wide association studies catalog. We did a literature search to select papers ascertaining these variants and vitamin D concentrations in Brazil.

Results.

GC was the gene with the strongest association with vitamin D levels, in agreement with existing findings in European populations. However, VDR was the most investigated gene, regardless of its non-existing association with vitamin D in the genomewide association studies.

Conclusions.

More research is needed to validate sound proxies for vitamin D levels in Brazil, for example, prioritizing GC rather than VDR.

Keywords: Vitamin D; genome-wide association study; polymorphisms, single nucleotide; vitamin D-binding protein; vitamin D3 24-hydroxylase; 25-hydroxyvitamin D3 1-alpha-hydroxylase; Brazil

Resemen

Introducción.

La vitamina D es necesaria para el metabolismo óseo y mineral, y participa en la regulación de la respuesta inmunitaria. También está relacionada con enfermedades crónicas en poblaciones europeas. En Brasil, existe una prevalencia elevada de deficiencia e insuficiencia de vitamina D, a pesar de la amplia disponibilidad de luz solar. Por lo tanto, es importante investigar el papel de la vitamina D como factor de riesgo de diversas enfermedades y establecer relaciones causales entre los niveles de vitamina D y los problemas de salud en la población brasileña.

Objetivo.

Examinar variantes genéticas relacionadas con la vitamina D sérica en estudios de asociación genómica de poblaciones europeas y comprobar si estas mismas están presentes en Brasil. De ser así, estos SNPs podrían utilizarse como proxies en métodos de inferencia causal, tales como la aleatorización mendeliana.

Materiales y métodos.

A partir del catálogo de estudios de asociación de genoma completo se extrajeron SNPs relacionados con los niveles de vitamina D. Luego se hizo una búsqueda bibliográfica para identificar los artículos que evaluaran estos SNPs y la concentración de vitamina D en Brasil.

Resultados.

GC fue el gen más fuertemente asociado con los niveles de vitamina D, en concordancia con los resultados existentes en poblaciones europeas. Sin embargo, el gen VDR fue el más investigado, aunque no esté vinculado con la vitamina D en los estudios de asociación de genoma completo.

Conclusiones.

Se necesita más investigación para validar proxies genéticos de los niveles de vitamina D en Brasil y se recomienda priorizar el gen GC en lugar de VDR.

Palabras clave: vitamina D; estudios de asociación del genoma completo; polimorfismos de nucleótido simple; proteína de unión a la vitamina D; vitamina D3 24-hidroxilasa; 25-hidroxivitamina D3 1-alfa-hidroxilasa; Brasil

Vitamin D is a steroid hormone and a fat-soluble vitamin required by the human body for physiological bone and mineral metabolism 1. It plays a role in immune response regulation 2, among other functions. When vitamin D levels are low, its insufficiency or deficiency may contribute to various adverse health outcomes, from skeletal disorders such as rickets and osteomalacia to extraskeletal conditions like cancer, infections, and cardiovascular, autoimmune, and neuropsychiatric diseases 3. However, evidence of a causal effect is still scarce for many of these health problems.

The main source of vitamin D is sunlight. Pre-vitamin D3 is converted from 7-dehydrocholesterol by ultraviolet radiation (UVR) B in the skin and then transported to the liver and other tissues to be metabolized to 25-hydroxy-vitamin D (25OHD) -the major circulating form- by the enzyme CYP2R1. The 25OHD is then further metabolized to 1,25 dihydroxy-vitamin D (1,25(OH)2D), primarily in the kidney, by the enzyme CYP27B1. The 1,25(OH)2D is the active metabolite of vitamin D, responsible for most of its biological actions achieved via binding to a specific nuclear vitamin D receptor (VDR) and eliciting the transcriptional regulation of target genes. The inactivation and catabolism of 25OHD and 1,25(OH)2D are carried out by the enzyme CYP24A1. Circulation in the bloodstream of pre-vitamin D3 and vitamin D metabolites occurs using the vitamin D binding protein (VDBP) and albumin 4.

The US Endocrine Society has defined concentrations of 25OHD above 30 ng/ml as sufficient, between 20 and 30 ng/ml as insufficient, and below 20 ng/ml as deficient vitamin D levels, or their equivalent in nmol/L (1 ng/ml=2,5 nmol/L). Cut-off values may differ between studies depending on whether they follow the recommendations of the US Endocrine Society, the US Institute of Medicine (12 ng/ml and 20 ng/ml as the thresholds for deficiency and sufficiency, respectively), or the UK Scientific Advisory Committee (below 10 ng/ml is considered vitamin D deficiency) 1,5. The proposed minimum thresholds are defined by criteria including the suppression of parathyroid hormone secretion, increased calcium absorption, good musculoskeletal health, and reduced fractures and falls 1.

Identifying causal associations of vitamin D with disease using observational methods can be difficult because of confounding variables and other biases often afflicting these studies. Some reports devise Mendelian randomization as a method to improve causal inference in epidemiology by employing genetic variants strongly associated with an exposure, known in this context as instrumental variables, which are unlikely to suffer the same observational biases 6. Mendelian randomization has become quite popular in the last decade, clarifying cause-and-effect relationships between many risk factors and disease outcomes 7. However, this success has been limited to populations of European descent, where most research is conducted. For Mendelian randomization to be effectively applied in Brazil (and other non-European populations) we need to select genetic variants that are instrumental variables for exposures in the local populations.

For that reason, we investigated single nucleotide polymorphisms (SNPs) strongly associated with serum vitamin D, initially detected in Europeans, to assess whether they could be used as proxies for vitamin D in the Brazilian population to determine causal relationships between vitamin D levels and chronic diseases using Mendelian randomization.

Materials and methods

Single nucleotide polymorphisms associated with 25OHD (from now on, vitamin D) levels in blood were identified using the publicly available genome-wide association studies (GWAS) catalog 8. We generated a list of the top ~30 SNPs most strongly associated with vitamin D (with p-value < 5x10-8) and their corresponding genes. With this SNP list, we searched for scientific papers reporting the association of these SNPs or genes with vitamin D concentration in the Brazilian population. We consulted the databases of PubMed (9), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) (10), Scopus 11, Scientific Electronic Library Online (SciELO) (12), and Biblioteca Digital Brasileira de Teses e Dissertações (BDTD) 13. The search was carried out using the reference SNPs cluster ID (rsID) or the name of the gene where the SNPs is located, together with the terms "Brazil" and "vitamin D". In addition, we included SNPs located in the vitamin D receptor (VDR) gene, extensively studied in populations across the world. We selected studies where the association of genotypes with circulating vitamin D was ascertained and written in English, Portuguese, or Spanish.

From the chosen papers, we extracted the following information: SNPs effect on vitamin D levels, the effect allele, allele frequencies, sample size, prevalence of vitamin D deficiency and insufficiency, female percentage, mean age, white ethnicity percentage, study type, Hardy-Weinberg equilibrium test, adjustment for population stratification, and target population.

Results

Twenty-eight SNPs strongly associated with vitamin D in blood, mainly in European populations, were obtained from the GWAS catalog (table 1). Also, we considered 18 extra SNPs in the VDR gene (table 2).

Table 1 Single nucleotide polymorphisms associated with vitamin D levels found in the GWAS catalog 

Variant Risk allele p-value Risk allele frequency (RAF) Beta 95%Cl Mapped gene Chr Location (bp) GRCh38 Study accession
rs145432346 C 7x10-286 0.826 0.108 unit increase [0.10-0.11] GC 4 71709300 GCST90019543
rs2282679 C 2x10-49 0.260 0.380 unit decrease [0.32-0.44] GC 4 71742666 GCST000664
rs2282679 2x10-14 0.290 No data No data GC 4 71742666 GCST001560
rs2282679 T 1x10-187 No data No data No data GC 4 71742666 GCST005366
rs2282679 T 4x10-63 0.770 16.628 (z-score) increase No data GC 4 71742666 GCST005782
rs2282679 T 5x10-62 No data No data No data GC 4 71742666 GCST005782
rs3755967 T 5x10-343 No data 0.089 unit decrease [0.084-0.094] GC 4 71743681 GCST005367
rs3755967 1x10-300 No data 0.206 unit decrease [0.20-0.21] GC 4 71743681 GCST90000618
rs3755967 T 5x10-343 No data 0.089 unit decrease [0.084-0.094] GC 4 71743681 GCST90019526
rs3755967 1x10-300 No data 0.206 unit decrease [0.20-0.21] GC 4 71743681 GCST90019540
rs11723621 G 3x10-1689 0.291 0.186 unit decrease [0.18-0.19] GC 4 71749645 GCST90019526
rs1352846 A 1x10-300 0.709 0.194 unit decrease [0.19-0.20] GC 4 71752058 GCST90019527
rs1352846 G 1x10-300 0.290 0.233 unit increase [0.23-0.24] GC 4 71752058 GCST90019528
rs1352846 G 1x10-300 0.290 0.188 unit increase [0.18-0.20] GC 4 71752058 GCST90019532
rs1352846 A 1x10-300 0.709 0.193 unit increase [0.19-0.20] GC 4 71752058 GCST90019534
rs1352846 G 1x10-297 0.290 0.121 unit decrease [0.12-0.13] GC 4 71752058 GCST90019541
rs4588 T 2x10-263 0.283 0.25 nmol/L decrease [0.23-0.27] GC 4 71752606 GCST90019546
rs7041 C 1x10-7 0.170 5.3 (z-score) increase No data GC 4 71752617 GCST005782
rs3775150 C 4x10-295 0.262 0.090 unit decrease [0.086-0.096] GC 4 71775033 GCST90019542
rs10832254 G 1x10-320 0.370 0.132 unit increase [0.13-0.14] RRAS2, COPB1 11 14413152 GCST90019526
rs10832254 G 1x10-300 0.370 No data No data RRAS2, COPB1 11 14413152 GCST90019533
rs577185477 C 2x10-342 0.015 0.379 unit decrease [0.36-0.40] PSMA1 11 14591017 GCST90019526
rs10832289 T 2x10-266 0.410 0.068 unit decrease [0.065-0.072] PDE3B 11 14647950 GCST90019545
rs188480917 G 5x10-275 0.011 0.343 unit decrease [0.32-0.36] PDE3B 11 14764324 GCST90019544
rs116970203 No data 1x10-300 No data 0.365 unit decrease [0.35-0.38] PDE3B 11 14855172 GCST90019529
rs116970203 G 1x10-300 0.973 0.376 unit increase [0.36-0.39] PDE3B 11 14855172 GCST90019535
rs116970203 G 1x10-300 0.973 0.377 unit decrease [0.37-0.39] PDE3B 11 14855172 GCST90019537
rs1894100 1x10-300 No data 0.102 unit decrease [0.097-0.107] ACTE1P 11 14855172 GCST90019530
rs117913124 A 2x10-775 0.028 0.354 unit decrease [0.34-0.37] CYP2R1 11 14879385 GCST90019526
rs12794714 G 1x10-300 0.578 0.0878 unit increase [0.084-0.092] CYP2R1 11 14892029 GCST90019536
rs12794714 G 1x10-300 0.578 0.089 unit decrease [0.085-0.093] CYP2R1 11 14892029 GCST90019538
rs10741657 A 2x10-38 No data No data No data CALCB, CYP2R1 11 14893332 GCST005366
rs10741657 A 2x10-46 No data 0.031 unit increase [0.027-0.035] CALCB, CYP2R1 11 14893332 GCST005367
rs10741657 A 2x10-6 No data No data No data CALCB, CYP2R1 11 14893332 GCST005782
rs10741657 A 3x10-11 0.421 2.1 mmol/L increase No data CALCB, CYP2R1 11 14893332 GCST012014
rs11023379 5x10-226 No data 0.065 unit decrease [0.061-0.069] CALCB 11 14908414 GCST90019549
rs11233933 1x10-300 No data 0.115 unit decrease [0.11-0.12] NADSYN1 11 71419297 GCST90019531
rs12803256 G 9x10-407 0.771 0.100 unit increase [0.096-0.105] ACTE1P 11 71421822 GCST90019526
rs12803256 A 1x10-300 0.223 0.105 unit decrease [0.10-0.11] ACTE1P 11 71421822 GCST90019539
rs12785878 T 4x10-62 No data 0.0360 unit increase [0.032-0.040] NADSYN1 11 71456403 GCST005367
rs12800438 A 1x10-16 No data No data No data NADSYN1 11 71459957 GCST005782
rs4944957 A 1x10-16 No data No data No data NADSYN1 11 71459957 GCST005782
rs12278461 C 5x10-228 0.210 0.129 unit decrease [0.12-0.14] NADSYN1 11 71471139 GCST90019548
rs3829251 A 3x10-9 0.190 0.180 unit decrease [0.12-0.24] NADSYN1 11 71483513 GCST000664
rs200454003 T 4x10-256 0.265 0.086 unit decrease [0.082-0.092] NADSYN1 11 71517944 GCST90019547
rs10745742 T 1x10-7 No data No data No data AMDHD1 12 95964751 GCST005366
rs10745742 T 2x10-20 No data 0.019 unit increase [0.015-0.023] AMDHD1 12 95964751 GCST005367
rs17216707 T 1x10-14 No data No data No data CYP24A1, BCAS1 20 54115823 GCST005366
rs17216707 T 8x10-23 No data 0.026 unit increase [0.021-0.031] CYP24A1, BCAS1 20 54115823 GCST005367
rs17216707 T 6x10-48 0.817 0.038 unit decrease [0.032-0.044] CYP24A1, BCAS1 20 54115823 GCST90000616

bp: base pairs; Chr: chromosome

Same single nucleotide polymorphisms identified in different studies are shown in colour.

Table 2 VDR single nucleotide polymorphisms examined in relation to vitamin D levels in the Brazilian population 

Variant Allele 1 Allele 2 Chromosome Location (bp) GRCh38 Gene position
rs9729 C A 12 47842840 3’UTR
rs739837 G T 12 47844438 3’UTR
rs731236 G A 12 47844974 Ile352Ile
rs7975232 C A 12 47845054 intron
rs1544410 T C 12 47846052 intron
rs7963776 G A 12 47849594 intron
rs7967152 A C 12 47850401 intron
rs2189480 G T 12 47870045 intron
rs2228570 A G 12 47879112 Met1Thr
rs2853564 C T 12 47884704 intron
rs7965274 T C 12 47886384 intron
rs2853561 C T 12 47887474 intron
rs10875694 T A 12 47887877 intron
rs59128934 G T 12 47891025 intron
rs11168287 G A 12 47891631 intron
rs4328262 G T 12 47891865 intron
rs4237855 G A 12 47893420 intron
rs11568820 A G 12 47908762 -

bp: base pairs

GC vitamin D binding protein gene

Vitamin D binding protein gene (GC) is located on chromosome 4q13.3 and encodes for the VDBP. Nine SNPs in this gene were among the 28 variants most robustly associated with serum vitamin D in previous GWAS (i.e. rs11723621, rs1352846, rs145432346, rs222020, rs2282679, rs3755967, rs3775150, rs4588, rs7041). Only rs2282679, rs4588, and rs7041 were analyzed in the Brazilian population (supplementary table 1). We found a total of six published studies in Brazil, three in Porto Alegre, the capital of the state of Rio Grande do Sul, and one each in the states of Rio de Janeiro, Paraná, and São Paulo. The target populations were diverse and involved women of reproductive age, university civil servants, and individuals affected by chronic diseases such as hepatitis C and cirrhosis, but their minor allele frequencies were quite similar (table 3).

Table 3 Allele frequencies of GC single nucleotide polymorphisms tested in association with vitamin D levels in the Brazilian population 

rs4588 City, State Allele 1 Allele 2 Allele 1 frequency
Adult patients with chronic hepatitis C genotype 1 Porto Alegre, RS T G 0.213
Women with no evidence of clinical disease Porto Alegre, RS A C 0.293
Women of reproductive age Porto Alegre, RS A C 0.230
Healthy female students Curitiba, PR A C 0.267
Patients with cirrhosis São Jose do Rio Preto, SP A C 0.300
Controls (cirrhosis) São Jose do Rio Preto, SP A C 0.280
rs7041
Adult patients with chronic hepatitis C genotype 1 Porto Alegre, RS C A 0.461
Women with no evidence of clinical disease Porto Alegre, RS G T 0.484
Women of reproductive age Porto Alegre, RS G T 0.535
Healthy female students Curitiba, PR G T 0.485
Patients with cirrhosis São Jose do Rio Preto, SP G T 0.460
Controls (cirrhosis) São Jose do Rio Preto, SP G T 0.510
rs2282679
University civil servants Rio de Janeiro, RJ C A 0.222
Women with no evidence of clinical disease Porto Alegre, RS C A 0.283
Women of reproductive age Porto Alegre, RS C A 0.225

PR: Paraná; RJ: Rio de Janeiro: RS: Rio Grande do Sul; SP: São Paulo

Overall, we uncovered evidence of the GC gene associated with vitamin D concentrations in Brazil, with the rs4588 A allele, the rs7041 T allele, and the rs2282679 C allele underlying lower vitamin D levels.

Vitamin D receptor gene (VDR)

Despite not being one of the genes identified in earlier GWAS as associated with vitamin D levels, the Vitamin D receptor gene (VDR) has been examined in numerous human groups, often in studies conducted before the GWAS era. Our literature search identified 12 publications assessing circulating vitamin D with VDR genotypes in Brazil (supplementary table 2). The SNPs rs1544410 (G/A), rs2228570 (C/T), rs731236 (T/C), and rs7975232 (T/G), formerly detected using the restriction enzymes BsmI, FokI, TaqI, and ApaI, respectively, were ascertained in most analyses, encompassing a variety of populations across the country (table 4). However, unlike what was observed with the GC gene, results were inconsistent in terms of the effect found or the direction of that effect. For instance, while the A allele of SNPs rs1544410 was associated with lower levels of vitamin D in young children from Acre 14, it increases vitamin D in girls 7-18 years old from south Brazil 15. The C allele at SNPs rs731236 was associated with higher serum vitamin D in girls from south Brazil and pregnant women from Bahia but appeared to have the opposite effect in type 1 diabetes patients from Pará state 16.

Table 4 Allele frequencies of VDR single nucleotide polymorphisms most frequently tested in association with vitamin D levels in the Brazilian population 

rs1544410 (BsmI) City, State Allele 1 Allele 2 Allele 1 Frequency
Adolescents without chronic disease João Pessoa, PB A G 0.395
Adult male patients with Chagas disease Botucatu, SP A G 0.400
Patients with polycystic ovary syndrome Porto Alegre, RS A G 0.400
Non-hirsute women with regular ovulatory cycles Porto Alegre, RS A G 0.350
Children aged ≤ 10 years Acrelândia, AC T C 0.406
Healthy girls Curitiba, PR/Porto Alegre, RS A G 0.323
Type 1 diabetes (T1D) patients Belém, PA A G n/a
Controls (T1D) Belém, PA A G n/a
Type 2 diabetes (T2D) patients Belo Horizonte, MG A G 0.401
Controls (T2D) Belo Horizonte, MG A G 0.411
Colorectal cancer cases São Paulo, SP n/a
Controls (CRC) São Paulo, SP n/a
rs2228570 (FokI)
Children with persistent primary teeth (PPT) Riberão Preto, SP A G 0.250
Controls (PPT) Riberão Preto, SP A G 0.269
Children with delayed tooth eruption (DTE) Riberão Preto, SP A G 0.296
Controls (DTE) Riberão Preto, SP A G 0.379
Adolescents without chronic disease João Pessoa, PB T C 0.332
Adult male patients with Chagas disease Botucatu, SP T C 0.440
Children aged ≤ 10 years Acrelândia, AC A G 0.299
T1D patients Belém, PA T C 0.308
Controls (T1D) Belém, PA T C 0.331
T2D patients Belo Horizonte, MG T C 0.245
Controls (T2D) Belo Horizonte, MG T C 0.306
rs731236 (TaqI)
Pregnant women Santo Antônio de Jesus, BA G A 0.300
Adult male patients with Chagas disease Botucatu, SP G A 0.260
Patients with PCOS Porto Alegre, RS G A 0.396
Non-hirsute women with regular ovulatory cycles Porto Alegre, RS G A 0.354
Children aged ≤ 10 years Acrelândia, AC G A 0.396
Healthy girls Curitiba, PR/Porto Alegre, RS C T 0.314
T1D patients Belém, PA C T 0.315
Controls (T1D) Belém, PA C T 0.283
T2D patients Belo Horizonte, MG C T 0.332
Controls (T2D) Belo Horizonte, MG C T 0.403
rs7975232 (ApaI)
Pregnant women Santo Antônio de Jesus, BA C A 0.400
Patients with PCOS Porto Alegre, RS C A 0.447
Non-hirsute women with regular ovulatory cycles Porto Alegre, RS C A 0.400
Children aged ≤ 10 years Acrelândia, AC C A 0.431
Healthy girls Curitiba, PR/Porto Alegre, RS G T 0.429
T1D patients Belém, PA G T 0.362
Controls (T1D) Belém, PA G T 0.446
T2D patients Belo Horizonte, MG C A 0.245
Controls (T2D) Belo Horizonte, MG C A 0.210
Colorectal cancer (CRC) cases São Paulo, SP n/a
Controls (CRC) São Paulo, SP n/a
rs739837
Children with persistent primary teeth (PPT) Riberão Preto, SP G T 0.400
Controls (PPT) Riberão Preto, SP G T 0.500
Children with delayed tooth eruption (DTE) Riberão Preto, SP G T 0.417
Controls (DTE) Riberão Preto, SP G T 0.366
SCAALA cohort Salvador, BA G T 0.484
rs11568820 (Cdx2)
Children aged ≤ 10 years Acrelândia, AC A G 0.399
Asthmatic children Curitiba, PR A G 0.284
Non-asthmatic children Curitiba, PR A G 0.295

AC: Acre; BA: Bahia; MG: Minas Gerais; PA: Pará; PB: Paraíba; PR: Paraná; RS: Rio Grande do Sul; SP: São Paulo

n/a: not applicable

Other genes

We identified 25 SNPs in eight genes other than GC and VDR among the top predictors of vitamin D levels in the GWAS catalog. However, just four of these genes have been explored in Brazil (CYP2R1, CYP24A1, CYP27B1, NADSYN1 ) (supplementary table 3). Several polymorphisms in CYP2R1 and CYP24A1 were associated with serum vitamin D and vitamin D insufficiency in a study of ~800 young people from deprived areas in Salvador, Bahia 17. In contrast, smaller studies investigating the same genes, but different SNPs and populations did not find any effect 18-20.

Discussion

Despite the widespread availability of sunlight across Brazil and UVR levels ensuring vitamin D synthesis in the skin 21, numerous Brazilian studies report a high prevalence of vitamin D deficiency and insufficiency 22. Since 2017, the Sociedade Brasileira de Endocrinologia e Metabologia (SBEM) and the Sociedade Brasileira de Patologia Clínica/ Medicina Laboratorial(SBPC/ML) recommend a 25OHD level equal to or above 20 ng/ml for individuals up to 60 years old, and a range of 30 to 60 ng/ ml for at-risk groups 23. Considering other sources of vitamin D like diet and supplementation, vitamin D intake in Brazil is limited, food fortification is uncommon, and the use of vitamin D supplements (≤ 10%) is infrequent 23. To that extent, the SBEM only recommends supplementation for specific groups at risk of deficiency, for example, pregnant and lactating women, individuals with osteoporosis, elderly people, and patients with conditions that affect vitamin D metabolism 24.

In general, our findings showed limited local research on the genetic determinants of vitamin D levels, with a predilection towards investigating the VDR gene, but with sounder evidence accumulating on the effects of the GC gene. This observation agrees with the GWAS data indicating that GC, the gene that encodes for the binding protein, is among the dominant genetic predictors of vitamin D concentrations in European, Asian, and African-ancestry populations 25-30. Conversely, a look-up of VDR in the GWAS catalog returned associations with different traits but not with vitamin D levels (supplementary table 4).

Brazil needs to conduct more research to confirm the role of GC (and clarify the one of VDR) and to reveal other genetic variants robustly associated with serum vitamin D. The identification of reliable proxies will allow us to establish causal associations with disease and promote the use of appropriate polygenic risk scores for predictive purposes.

Additionally, we would like to suggest a few improvements to future studies, especially to use them as the basis for meta-analyses. For example, it is important to describe all findings (significant and non-significant) and to provide them as supplementary material, if necessary, assess Hardy-Weinberg equilibrium and report test results, and, given Brazil's admixed genetic background, adjust for markers of population stratification or related variables (e.g., race/ethnicity, socioeconomic status) when these are unavailable.

Among the limitations of our study, there is still the chance that we have missed relevant publications not covered by our search parameters, or SNPs associated with vitamin D in the GWAS catalog, outside the top 30, with reports in Brazilian populations, although this is rather unlikely. In addition, given the limited number of studies found and the heterogeneity of the included samples, it was not possible to run a meta-analysis to obtain an indication of the strength and direction of the effect of GC variants on the levels of vitamin D, making unfeasible the implementation of any action in clinical practice linked to our results.

In conclusion, there is a lot of interest in vitamin D as a potential risk factor for several chronic diseases of public health impact. Therefore, it is essential to identify causal relationships between vitamin D levels and disease outcomes. One way of improving causal inference would be to apply Mendelian randomization, which uses genetic variants to proxy or instrument the exposure (e.g., serum vitamin D) to obtain unbiased estimates of these relationships. However, the instruments should be appropriate for the study population, either having been discovered or validated locally. We noticed insufficient research in Brazil (and South America) on vitamin D proxies, with existing studies focusing on the VDR as a genetic risk factor for disease, which may or may not produce changes in circulating vitamin D.

Supplementary archives

Supplementary table 1 Scientific articles on GC polymorphisms and vitamin D levels in the Brazilian population 

study database authors acess link population region/city/town gene SNP effect or minor allele effect or minor allele frequency prevalence of vitamin D deficiency (95% CI) prevalence of vitamin D insuficiency (%) p-value 25OHD (ng/ml) mean ± sd p-value beta 25OHD (ng/ml) CI 95%/se p-value OR CI 95% p-value DBP (ug/ml) p-value N age (years) mean ± sd (range) % female ethnicity (% whites) Hardy-Weinberg equilibrium (p-value) correction for population stratification type of study comments
Genetic, sociodemographic and lifestyle factors associated with serum 25-hydroxyvitamin D concentrations in Brazilian adults: the Pró-Saúde Study PUBMED Bezerra et al. (2022) https://pubmed.ncbi.nlm.nih.gov/35043885/ university civil servants Rio de Janeiro, RJ GC rs2282679 C 0,222 55,0 <0.001 48.0 ± 19.1 nmol/l <0.001 491 45-54 (43.8%) 51,1 in equilibrium no cross-sectional
CC 65,4 38.6 (27.2) -10,63 (-17.52, -3.74)
CA 65,7 44.4 (21.9) -6,84 (-10.09, -3.59)
AA 48,2 50.3 (28.3) reference
Genetic polymorphisms related to the vitamin D pathway in patients with cirrhosis with or without hepatocellular carcinoma (HCC) PUBMED Brait et al. (2022) https://pubmed.ncbi.nlm.nih.gov/35919232/ patients with cirrhosis & controls São Jose do Rio Preto, SP GC rs4588; rs7041 A; G rs4588 A: 0.30 cases/0.28 controls   30.0 cases/35.0 controls                       383 16-81; 20-84 21.5; 43.6   in equilibrium in both cirrhosis cases and controls no case-control reduced levels of vitamin D in cases showed association with genotypes with at least one mutant allele (_/A) for GC-rs4588 (77.8%) compared to controls (14.3%; p = 0.0406).
                  rs7041 G: 0.46 cases/0.51 controls                                          
Effect of vitamin D serum levels and GC gene polymorphisms in liver fibrosis due to chronic hepatitis C PUBMED Azevedo et al. (2017) https://pubmed.ncbi.nlm.nih.gov/28809744/ adult patients with chronic hepatitis C genotype 1 Porto Alegre, RS GC rs4588; rs7041 T; C 0.213; 0.461 50,0 27,3 0,02 19.9 (14.0-29.4)                   132 53 (± 9) 46,2   in equilibrium no cross-sectional 25OHD levels differences between haplotypes too.
rs4588 GG + GT 20.2 (15.8-29.8) 0,023
TT 9.6 (8.1-20.9)
rs7041 CC + CA 22.8 (16.2-30.1) 0,026
AA 17.0 (8.9-26.6)
Prevalence of vitamin D deficiency in women from southern Brazil and association with vitamin D-binding protein levels and GC-DBP gene polymorphisms PUBMED Santos et al. (2019) https://pubmed.ncbi.nlm.nih.gov/31830090/ women with no evidence of clinical disease Porto Alegre, RS GC rs4588; rs7041; rs2282679 A; G; C 0.293; 0.484; 0.283 39,7     22.80 (± 8.32)                   443 53.4 (± 9.4) 100 80 0.23, 0.09, 0.68 no cross-sectional  
rs4588 CC 23.00 ± 8.84 0,282 -0,6 202.98 ± 28.28 < 0.001
CA 23.16 ± 7.83 196.49 ± 29.88
AA 20.77 ± 7.16 183.95 ± 36.85
rs7041 TT 21.48 ± 7.54 0,030 1.2 192.96 ± 33.41 0,078
TG 23.20 ± 8.25 201.38 ± 28.06
GG 23.78 ± 9.14 199.82 ± 30.02
rs2282679 AA 23.39 ± 8.79 0,034 -1,3 1,00 203.13 ± 27.90 < 0.001
AC 22.83 ± 7.81 0,981 (0.758; 1.269) 0,884 196.41 ± 30.04
CC 19.70 ± 7.17 1,740 (1.301; 2.237) <0.001 180.88 ± 38.20
Genetic variant in vitamin D-binding protein is associated with metabolic syndrome and lower 25-hydroxyvitamin D levels in polycystic ovary syndrome: A cross-sectional study PUBMED Santos et al. (2017) https://pubmed.ncbi.nlm.nih.gov/28278285/ women of reproductive age Porto Alegre, RS GC rs4588; rs7041; rs2282679 A; G; C 0.230; 0.535; 0.225 42,2 45,1   21.48 ± 7.25; 21.50 ± 6.90                   291 (191 PCOS + 100 controls)/102 (54 PCOS + 48 controls) with 25OHD levels 22.89 ± 6.66 PCOS/25.18 ± 7.72 controls 100 93.9 in equilibrium in both PCOS and control groups no cross-sectional LD rs4588 & rs7041 r2 = 0.44
rs4588 CC 0,542
CA + AA
rs7041 TT 69,6 0,002
TG + GG exact value not available
rs2282679 AA 0,542
                AC + CC                                            
Variations in the vitamin D-binding protein (DBP) gene are related to lower 25-hydroxyvitamin d levels in healthy girls: a cross-sectional study PUBMED Santos et al. (2013) https://pubmed.ncbi.nlm.nih.gov/23548751/ healthy female students Curitiba, PR GC rs4588; rs7041 A; G 0.267; 0.485 22.1 ± 5.9 198 13.17 ± 1.74 100 in equilibrium no cross-sectional LD rs4588 & rs7041 r2 = 0.38
rs4588 CC 0,030 -1,65 0,012 2,73 (0.94; 7.93) A allele 25OHD levels differences between haplotypes too.
CA
AA
rs7041 TT 0,010 -1,74 0,002 3,47 (1.45; 8.27) T allele
TG
                GG                                            

Supplementary table 2 Scientific articles on VDR gene polymorphisms and vitamin D levels in the Brazilian population 

Study Database Authors Access link Population Region/city/town Gene SNP Effect or minor allele Effect or minor allele frequency Prevalence of vitamin D deficiency (95% CI) p-value Prevalence of vitamin D insuficiency (%) p-value 25OHD (ng/ml) mean ± sd p-value N Age (years) mean ± SD (range) % female Ethnicity (% white) Beta 25OHD (ng/mL) 95% CI/SE p-value OR CI 95% p-value Hardy-Weinberg equilibrium (p-value) Correction for population stratification Type of study Comments
Vitamin D deficiency is a risk factor for delayed tooth eruption associated with persistent primary tooth (PPT) PUBMED Xavier et al. (2021) https://pubmed.ncbi.nlm.nih.gov/33944665/ children with primary teeth with exfoliation time expired for more than a year (persistent primary tooth) and children with regular primary teeth exfoliation time (controls) Riberao Preto, SP VDR rs2228570; rs739837 A; G 26.7 PPT/0.0 controls 14.2-37.4 PPT/21.9-48.2 controls 30 (15 PPT + 15 controls) 9.4 ± 1.8 43,3 not reported no case-control data showed no association between genetic polymorphisms in VDR and serum 25OHD levels (p>0.05).
rs2228570 A 0.269 controls/0.350 PPT; 0.379 controls/0.296 DTE
              rs739837 G 0.500 controls/0.400 PPT; 0.366 controls/0.417 DTE                                        
Genetic polymorphisms in vitamin D pathway infuence 25(OH)D levels and are associated with atopy and asthma PUBMED Galvão et al (2020) https://pubmed.ncbi.nlm.nih.gov/32834827/ SCAALA cohort (children from deprived areas) Salvador, BA VDR rs10875694; rs11168287; rs2189480; rs2853561; rs2853564; rs4237855; rs4328262; rs59128934; rs739837; rs7963776; rs7965274; rs7967152; rs9729 G; C; G; G; G; G; T; A; C 20,8 40,7 27.33 ± 9.60 792 (11-19) 47,6 in equilibrium individual genetic ancestry using 269 AIMs cross-sectional nested in cohort write to them to ask the DBP (GC) SNPs vs 25OHD levels.
rs11168287 G 0,377 0,78 0.63, 0.97 0,028
rs2853564 C 0,177 1,30 1.00, 1.70 0,049
rs4237855 G 0,323 0,79 0.63, 0.99 0,038
rs59128934 G 0,041 2,07 1.28, 3.34 0,002
rs739837 G 0,484 0,78 0.63, 0.96 0,019
rs7963776 G 0,474 0,79 0.64, 0.98 0,029
rs7965274 T 0,180 1,31 1.01, 1.70 0,044
rs7967152 A 0,461 0,77 0.62, 0.95 0,013
rs9729 C 0,480 0,78 0.70, 0.96 0,017 rs9729 C allele increases VDR expression (p = 0.0007) in GTEx. Rs9729 is in strong LD with rs731236 (TaqI).
              rs59128934 G 0,057                           1,78 1.12, 2.83 0,014        
Variants rs1544410 and rs2228570 of the vitamin D receptor gene and glycemic levels in adolescents from Northeast Brazil PUBMED Neves et al. (2019) https://pubmed.ncbi.nlm.nih.gov/31718198/ adolescents who did not present any chronic disease João Pessoa, PB VDR rs1544410; rs2228570 B = A; f = T 0.395; 0.332 50,0 28.0 (28.4-30.7) 208 17.7 (± 1.14) 62,5 rs1544410 out of HWE (calculated by us) no cross-sectional
rs1544410 BB = AA 31.23 (9.35) 0,281 47 1,72 0.84, 3.50 0,134
Bb = GA 29.12 (7.80) 70 1,01 0.54, 1.90 0,967
bb = GG 29.01 (7.90) 91 1,00
rs2228570 FF = CC 29.23 (7.76) 0,840 92
Ff = TC 30.03 (9.06) 94
                ff = TT           28.81 (6.90)   22                          
Polymorphism in the vitamin D receptor gene is associated with maternal vitamin D concentration and neonatal outcomes: A Brazilian cohort study PUBMED Pereira Santos et al. (2019) https://pubmed.ncbi.nlm.nih.gov/31070844/ pregnant women who lived in the urban area of the municipality and received prenatal services Santo Antônio de Jesus, BA VDR rs731236; rs7975232 G; C 0.300; 0.400 23,0   43,0   72.62 ± 31.51 nmol/l   270 26.73 ± 5.85 100 18,15 nmol/L           0.24; 0.94 no prospective cohort  
rs731236 GG vs AA 14,09 0.85, 27.34 0,03
        rs7975232 CC vs AA                     1,15 (-10.28, 12.59) 0,84              
Association of vitamin D3, VDR gene polymorphisms. and LL-37 with a clinical form of Chagas Disease SciELO Junior et al. (2019) https://www.scielo.br/j/rsbmt/a/z7QwDmFg7Ndz6RxRtbJG8SK/?lang=en adult male patients with indeterminate and cardiac form of chronic Chagas Disease (CD) Botucatu, SP VDR rs1544410; rs2228570; rs731236; rs7975232   0.40; 0.44; 0.26; 0.31 10,9   53,1 0.207; 0.767; 0.617; 0.837 29.3 ± 5.8; 25.4 ± 7.3   64 (46 indeterminate + 18 cardiac) 60.3 ± 8.1; 62.2 ± 11.0 0 76,6             not reported no cross-sectional  
Apa-I polymorphism in VDR gene is related to metabolic syndrome in polycystic ovary syndrome: a cross-sectional study PUBMED Santos et al. (2018) https://pubmed.ncbi.nlm.nih.gov/29669566/ patients with polycystic ovary syndrome (PCOS) + non-hirsute women with regular ovulatory cycles Porto Alegre, RS VDR rs1544410; rs731236; rs7975232 A; G; C 0.400/0.350; 0.396/0.354; 0.447/0.400 21.47 ± 7.61; 21.50 ± 6.90 291 (191 PCOS + 100 controls) 22.89 ± 6.66; 25.18 ± 7.72 in equilibrium cross-sectional
rs7975232 AA + CA 21.52 ± 7.16 0,399
                CC           21.31 ± 6.15                 as            
Mutações do gene receptor da vitamina D e níveis séricos de vitamina D em crianças com asma SciELO Santos et al. (2018) https://www.scielo.br/j/rpp/a/wVLMgrfnLrBbDVsCdLFcvCJ/?lang=pt children aged 7 to 14 years (asthmatics and non-asthmatics) Curitiba, PR VDR Cdx2 (rs11568820?) G 0.714 (0.716 asthmatics/0.705 non-asthmatics)     98,0       77 (60 asthmatic + 17 non-asthmatic) 10.8 ± 2.2 43,0               not reported no cross-sectional There was no association between vitamin D, PTH or calcium levels with any of the polymorphisms studied.
Genetic polymorphisms of vitamin D metabolism genes and serum level of vitamin D in colorectal cancer PUBMED Vidigal et al. (2017) https://pubmed.ncbi.nlm.nih.gov/28665452/ colorectal cancer cases & controls São Paulo, SP VDR rs1544410; rs7975232 51.0; 43.3 18.4; 26.6 26.4 ± 17.6; 28.4 ± 19.2 473 (152 CRC + 321 controls) 62.8 ± 13.0; 62.7 ± 10.4 46.7; 49.2 not reported no case-control
rs1544410 AA 29.5; 24.4 0,482
Aa + aa 27.1; 28.3 0,074
rs7975232 BB 32.5; 23.2 0,216
Bb + bb 27.1; 27.5 0,155
25-hydroxyvitamin D3 levels, BsmI polymorphism and insulin resistance in Brazilian Amazonian children PUBMED Cobayashi et al. (2015) https://pubmed.ncbi.nlm.nih.gov/26047339/ children aged ≤ 10 years Acrelândia, AC VDR rs11568820; rs1544410; rs2228570; rs731236; rs7975232 A; T; A; G; C 0.399; 0.406; 0.299; 0.396; 0.431 11.1 (9.2-13.2)   21.8 (19.2-24.5)   66 (86-105)   1225 (974 with 25OHD levels) 5.4 ± 2.8 (2.8 months-10.4 years) 49,0 10,3 0.007; 0.100           HWE was tested, results not reported. adjusted for race/ethnicity    
rs1544410 T -0,070 -0.132. -0.008 0,026
              rs1544410 T                       -0,053 -0.100. -0.006 0,025 adjusted for sex, age, race/ethn            
Vitamin D deficiency in girls from South Brazil: a cross-sectional study on prevalence and association with vitamin D receptor gene variants PUBMED Santos et al (2012) https://pubmed.ncbi.nlm.nih.gov/22681928/ healthy girls Curitiba, PR/Porto Alegre, RS VDR rs1544410; rs731236; rs7975232 A; C; G 36,3 54,3 21.3 ± 6.8 234 13.0 ± 1.9 (7-18) 100,0 in equilibrium no cross-sectional LD: rs1544410 & rs7975232 r2=0.330/rs1544410 & rs731236 r2=0.807/rs7975232 & rs731236 r2=0.319
rs1544410 A 0,323 GA + AA vs GG 0,014 3,114 0,881 < 0.001 1,96 1.14, 3.37 there were differences in serum 25OHD levels by haplotype as well
rs731236 C 0,314 TC + CC vs TT 0,034 2,505 0,890 0,005 1,78 1.04, 3.06
              rs7975232 G 0,429 GT + TT vs GG 0,078                 2,575 1,189 0,031   0.27, 1.08          
Variants in the VDR gene may influence 25(OH)D levels in type 1 diabetes mellitus in a Brazilian population Ferraz et al. (2022) https://pubmed.ncbi.nlm.nih.gov/35267984/ T1D patients & controls Belém, PA VDR rs1544410; rs2228570; rs731236; rs7975232 A; T; C; T na/na; 0.308/0.331; 0.315/0.283; 0.638/0.554 26.04 ± 8.45; 32.60 ± 8.85 148 (65 T1D + 83 controls) 27.3 ± 10.4; 38.5 ± 13.6 53.9; 77.1 in equilibrium in both cases and controls 61 AIMs used to estimate individual ancestry but no correction made case-control
rs1544410 AA lower levels than GG + GA < 0.05
rs2228570 TT higher levels than CC + CT < 0.05
rs731236 CC lower levels than TT + TC < 0.05
              rs7975232               n.s                            
Lower vitamin D levels, but not VDR polymorphisms, influence type 2 diabetes mellitus in Brazilian population independently of obesity Rodrigues et al. (2019) https://pubmed.ncbi.nlm.nih.gov/31121922/ T2D patients & controls Belo Horizonte, MG VDR rs1544410; rs2228570; rs731236; rs7975232 A; T; C; C 0.401/0.411; 0.245/0.306; 0.332/0.403; 0.245/0.210 59.7; 12.0 17.2 ± 16.6; 30.8 ± 16.2 163 (101 T2D + 62 controls) 56 ± 13; 53 ± 18 81.0 (81.2; 80.6) all > 0.025 no case-control
rs1544410 AA 26.0 (37.6) 0,415
AG 24.8 (18.5)
GG 21.2 (19.3)
rs2228570 TT 23.2 (20.2) 0,764
TC 27.4 (24.5)
CC 22.9 (35.2)
rs731236 CC 20.3 (30.3) 0,222
CT 25.6 (23.3)
TT 21.4 (19.3)
rs7975232 AA 24.7 (22.7) 0,656
AC 25.2 (17.5)
                CC           17.9 (29.9)                              

Supplementary table 3 Scientific articles on polymorphisms in genes other than GC and VDR and vitamin D levels in the Brazilian population 

study database authors acess link population region/city/town gene SNP effect or minor allele effect or minor allele frequency prevalence of vitamin D deficiency (95% CI) prevalence of vitamin D insuficiency (%) p-value 25OHD (ng/ml) mean ± sd p-value beta 25OHD (ng/ml) CI 95%/se p-value OR CI 95% p-value N age (years) mean ± sd (range) % female ethnicity (% whites) Hardy-Weinberg equilibrium (p-value) correction for population stratification type of study comments
Genetic, sociodemographic and lifestyle factors associated with serum 25-hydroxyvitamin D concentrations in Brazilian adults: the Pró-Saúde Study PUBMED Bezerra et al. (2022) https://pubmed.ncbi.nlm.nih.gov/35043885/ university civil servants Rio de Janeiro, RJ CYP2R1; NADSYN1; CYP24A1 rs10741657; rs12785878; rs6013897 G; T; T 55,0 48.0 ± 19.1 nmol/l 491 45-54 (43.8%) 51,1 rs12785878 & rs6013897 in HWD and not analysed no cross-sectional
rs10741657 G 0,705 0,119 median (IQR) 0,118
GG 59,2 46.0 (25.6)
GA 49,5 50.0 (28.3)
AA 56,8 49.5 (22.8)
Genetic polymorphisms in vitamin D pathway infuence 25(OH)D levels and are associated with atopy and asthma PUBMED Galvão et al (2020) https://pubmed.ncbi.nlm.nih.gov/32834827/ SCAALA cohort (children from deprived areas) Salvador, BA CYP2R1; CYP24A1 rs10500804, rs12794714; rs2245153, rs34043203, rs3886163, rs4809960, rs56229249 G, A; C, A, T, C, G         27.33 ± 9.60               792 (11-19) 47,6   in equilibrium individual genetic ancestry using 269 AIMs cross-sectional nested in cohort write to them to ask the DBP (GC) SNPs vs 25OHD levels.
CYP2R1 rs10500804 G -1,37 (-2.40, 0.35) 0,009 1,40 1.11, 1.77 0,006
GG 22.25 ± 9.31 0,043
GT 25.67 ± 9.25
TT 26.68 ± 9.79
CYP2R1 rs12794714 A -1,38 (-2.40, 0.35) 0,009 1,41 1.11, 1.79 0,005
AA 24.56 ± 9.28 0,058
AG 26.67 ± 9.26
GG 27.66 ± 9.73
CYP24A1 rs2245153 C 0,79 0.63, 0.99 0,042
CYP24A1 rs34043203 A 1,49 1.00, 2.22 0,049
CYP24A1 rs3886163 T -1,48 (-2.77, 0.18) 0,026 1,44 1.05, 1.99 0,025
TT 24.49 ± 8.20 0,094
TC 25.72 ± 10.00
CC 27.41 ± 9.42
CYP24A1 rs4809960 C 0,69 0.53, 0.91 0,008
CYP24A1 rs56229249 G 1,42 1.04, 1.94 0,028
Genetic polymorphisms related to the vitamin D pathway in patients with cirrhosis with or without hepatocellular carcinoma (HCC) PUBMED Brait et al. (2022) https://pubmed.ncbi.nlm.nih.gov/35919232/ patients with cirrhosis & controls São Jose do Rio Preto, SP CYP24A1 rs6013897 T 0.72; 0.70   30.0; 35.0                   383 16-81; 20-84 21.5; 43.6   in equilibrium no case-control no association with vitamin D levels
                                                         
Genetic polymorphisms of vitamin D metabolism genes and serum level of vitamin D in colorectal cancer PUBMED Vidigal et al. (2017) https://pubmed.ncbi.nlm.nih.gov/28665452/ colorectal cancer cases & controls São Paulo, SP CYP24A1; CYP27B1 rs158552; rs17217119; rs6013897; rs10877012 T; A; T; G 51.0; 43.3 18.4; 26.6 26.4 ± 17.6; 28.4 ± 19.2 473 (152 CRC + 321 controls) 62.8 ± 13.0; 62.7 ± 10.4 46.7; 49.2 not reported no case-control
rs158552 TT 25.7; 28.4 0,199
TC + CC 29.7; 25.3 0,385
rs17217119 AA 25.8; 25.6 0,247
AG + GG 29.9; 24.7 0,660
rs6013897 TT 26.9; 26.2 0,493
TA + AA 29.0; 26.3 0,958
rs10877012 GG 30.2; 26.2 0,047
                GT + TT         24.0; 28.2 0,381                            

Supplementary table 4 . Single nucleotide polymorphisms in the VDR gene associated with complex traits according to the GWAS catalog 

Beta CI Mapped gene Reported trait Trait(s) Study accession Location
0.063426755 unit decrease [0.042-0.085] VDR basal cell carcinoma basal cell carcinoma GCST90013410 12:47844438
0.0481096 unit increase [0.033-0.064] VDR total testosterone levels testosterone measurement GCST90012112 12:47860570
0.13136138 unit increase [0.088-0.175] VDR medication use (diuretics) Diuretic use measurement GCST007928 12:47860570
0.3943 unit increase [0.28-0.51] VDR diastolic blood pressure diastolic blood pressure GCST90132904 12:47860570
0.1314 unit increase [0.088-0.175] VDR medication use (diuretics) diuretic use measurement GCST90018985 12:47860570
    VDR cardiovascular disease cardiovascular disease GCST007072 12:47860570
    VDR gout gout GCST001356 12:47862166
0.32741 unit increase [0.18-0.47] VDR COVID-19 (hospitalized vs not hospitalized) COVID-19 GCST90104752 12:47873551
0.75 percent increase   VDR gut microbiota (beta diversity) gut microbiome measurement GCST003876 12:47876015
    VDR eosinophil counts eosinophil count GCST007065 12:47879112
0.0138518615 unit increase [0.0094-0.0183] VDR eosinophil percentage of white cells eosinophil percentage of leukocytes GCST90002382 12:47879112
47.572 unit increase   VDR serum immune biomarker levels inflammatory biomarker measurement, YKL40 measurement GCST010146 12:47914289
0.9905315 unit decrease   VDR sphingomyelin (d32:2) levels sphingomyelin measurement GCST90094889 12:47919236
0.57862 unit increase [0.33-0.83] VDR S-6-hydroxywarfarin levels S-6-hydroxywarfarin measurement GCST90129565 12:47920142
0.86594 unit increase [0.52-1.21] VDR R-6-hydroxywarfarin to R-warfarin ratio R-6-hydroxywarfarin to R-warfarin ratio measurement GCST90129572 12:47927031
    VDR adolescent idiopathic scoliosis adolescent idiopathic scoliosis GCST006287 12:47927916
    VDR, TMEM106C heel bone mineral density heel bone mineral density GCST007066 12:47943286
0.0304 unit increase [0.024-0.037] VDR, TMEM106C glycated hemoglobin levels HbA1c measurement GCST90019509 12:47943286
0.0541 unit decrease [0.038-0.07] TMEM106C, VDR glycated hemoglobin levels HbA1c measurement GCST90019509 12:47943734
0.049543403 unit increase [0.032-0.067] VDR, TMEM106C medication use (calcium channel blockers) calcium channel blocker use measurement GCST007929 12:47944639
    TMEM106C, VDR red blood cell count erythrocyte count GCST007069 12:47952685
0.015703138 unit increase [0.011-0.02] VDR, TMEM106C lymphocyte percentage of white cells lymphocyte percentage of leukocytes GCST90002389 12:47963231

References

1. Holick MF. Optimal vitamin D status for the prevention and treatment of osteoporosis. Drugs Aging. 2007;24:1017-29. https://doi.org/10.2165/00002512-200724120-00005Links ]

2. Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease. Nutrients. 2020;12:2097. https://doi.org/10.3390/nu12072097Links ]

3. Pilz S, Grübler M, Gaksch M, Schwetz V, Trummer C. Vitamin D and mortality. Anticancer Res. 2016;36:1379-88. [ Links ]

4. Bandera-Merchan B, Morcillo S, Martin-Nuñez G, Tinahones FJ, Macías-González M. The role of vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J Steroid Biochem Mol Biol. 2017;167:203-18. https://doi.org/10.1016/j.jsbmb.2016.11.020Links ]

5. Vieth R, Holick MF. The IOM-Endocrine Society controversy on recommended vitamin D targets. In: Vitamin D: Volume One: Biochemistry, Physiology and Diagnostics. 4th edition. Cambridge, MA: Academic Press; 2018. p. 1091-107. https://doi.org/10.1016/B978-0-12-809965-0.00059-8Links ]

6. Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1-22. https://doi.org/10.1093/ije/dyg070Links ]

7. Bennett DA, Du H. An overview of methods and exemplars of the use of Mendelian randomisation in nutritional research. Nutrients. 2022;14:3408. https://doi.org/10.3390/nu14163408Links ]

8. Global Core Biodata Resource. GWAS Catalog. Accessed: October 1, 2021. Available at: Available at: https://www.ebi.ac.uk/gwas/Links ]

9. National Library of Medicine. PubMed. Accessed: January 10, 2022. Available at : Available at : https://pubmed.ncbi.nlm.nih.gov/Links ]

10. Pan-American Health Organization. LILACS, scientific health information from Latin America and the Caribbean countries. Accessed: January 10, 2022. Available at: Available at: https://lilacs.bvsalud.org/Links ]

11. Elsevier B. V. Scopus. Accessed: January 10, 2022. Available at: Available at: https://www.scopus.com/Links ]

12. Red SciELO. Scielo, Scientific Electronic Library Online. Accessed: January 10, 2022. Available at: Available at: https://scielo.org/Links ]

13. Instituto Brasileiro de Informação em Ciência e Tecnologia. Biblioteca Digital Brasileira de Teses e Dissertacoes. Accessed: January 10, 2022. Available at: Available at: http://bdtd.ibict.br/vufind/Links ]

14. Cobayashi F, Lourenço BH, Cardoso MA. 25-hydroxyvitamin D3 levels, BsmI polymorphism and insulin resistance in Brazilian Amazonian children. Int J Mol Sci. 2015;16:12531-46. https://doi.org/10.3390/ijms160612531Links ]

15. Santos BR, Mascarenhas LPG, Satler F, Boguszewski MCS, Spritzer PM. Vitamin D deficiency in girls from South Brazil: A cross-sectional study on prevalence and association with vitamin D receptor gene variants. BMC Pediatr. 2012;12:606. https://doi.org/10.1186/1471-2431-12-62Links ]

16. Ferraz RS, Silva CS, Cavalcante GC, de Queiroz NNM, Felício KM, Felício JS, et al. Variants in the VDR gene may influence 25(OH)D levels in type 1 diabetes mellitus in a Brazilian population. Nutrients. 2022;14:1010. https://doi.org/10.3390/nu14051010Links ]

17. Galvão AA, de Araújo Sena F, de Andrade Belitardo EMM, de Santana MBR, Costa GN de O, Cruz ÁA, et al. Genetic polymorphisms in vitamin D pathway influence 25(OH)D levels and are associated with atopy and asthma. Allergy Asthma Clin Immunol. 2020;16:62. https://doi.org/10.1186/s13223-020-00460-yLinks ]

18. Bezerra FF, Normando P, Fonseca ACP, Zembrzuski V, Campos-Junior M, Cabello-Acero PH, et al. Genetic, sociodemographic and lifestyle factors associated with serum 25-hydroxyvitamin D. Cad Saúde Publica. 2022;38:e00287820. https://doi.org/10.1590/0102-311X00287820Links ]

19. Brait BJ, da Silva Lima SP, Aguiar FL, Fernandes-Ferreira R, OliveiraBrancati CIF, Ferraz JAML, et al. Genetic polymorphisms related to the vitamin D pathway in patients with cirrhosis with or without hepatocellular carcinoma (HCC). Ecancermedicalscience. 2022;16:1383. https://doi.org/10.3332/ecancer.2022.1383Links ]

20. Vidigal VM, Silva TD, de Oliveira J, Pimenta CAM, Felipe AV, Forones NM. Genetic polymorphisms of vitamin D receptor (VDR), CYP27B1 and CYP24A1 genes and the risk of colorectal cancer. Int J Biol Markers. 2017;32:e224-30. https://doi.org/10.5301/jbm.5000248Links ]

21. de Paula Corrêa M, Pires LCM. Doses of erythemal ultraviolet radiation observed in Brazil. Int J Dermatol. 2013;52:966-73. https://doi.org/10.1111/j.1365-4632.2012.05834.xLinks ]

22. Pereira-Santos M, dos Santos JYG, Carvalho GQ, Santos DB, Oliveira AM. Epidemiology of vitamin D insufficiency and deficiency in a population in a sunny country: Geospatial metaanalysis in Brazil. Crit Rev Food Sci Nutr. 2019;59:2102-9. https://doi.org/10.1080/10408398.2018.1437711Links ]

23. Mendes MM, Hart KH, Botelho PB, Lanham-New SA. Vitamin D status in the tropics: Is sunlight exposure the main determinant? Nutr Bull. 2018;43:428-34. https://doi.org/10.1111/nbu.12349Links ]

24. Maeda SS, Borba VZC, Camargo MBR, Silva DMW, Borges JLC, Bandeira F, et al. Recomendações da Sociedade Brasileira de Endocrinologia e Metabologia (SBEM) para o diagnóstico e tratamento da hipovitaminose D. Arq Bras Endocrinol Metabol. 2014;58:411-33. https://doi.org/10.1590/0004-2730000003388Links ]

25. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19:2739-45. https://doi.org/10.1093/hmg/ddq155Links ]

26. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet. 2010;376:180-8. https://doi.org/10.1016/S0140-6736(10)60588-0Links ]

27. Hong J, Hatchell KE, Bradfield JP, Bjonnes A, Chesi A, Lai CQ, et al. Transethnic evaluation identifies low-frequency loci associated with 25-hydroxyvitamin D concentrations. J Clin Endocrinol Metab. 2018;103:1380-92. https://doi.org/10.1210/jc.2017-01802Links ]

28. Kim YA, Yoon JW, Lee Y, Choi HJ, Yun JW, Bae E, et al. Unveiling genetic variants underlying vitamin D deficiency in multiple Korean cohorts by a genome-wide association study. Endocrinol Metab. 2021;36:1189-200. https://doi.org/10.3803/EnM.2021.1241Links ]

29. Parlato LA, Welch R, Ong IM, Long J, Cai Q, Steinwandel MD, et al. Genome-wide association study (GWAS) of circulating vitamin D outcomes among individuals of African ancestry. Am J Clin Nutr. 2023;117:308-16. https://doi.org/10.1016/j.ajcnut.2022.12.001Links ]

30. Manousaki D, Mitchell R, Dudding T, Haworth S, Harroud A, Forgetta V, et al. Genomewide association study for vitamin D levels reveals 69 independent loci. Am J Hum Genet. 2020;106:327-37. https://doi.org/10.1016/j.ajhg.2020.01.017Links ]

Author's contributions:

Caroline de Souza Silverio: Single nucleotide polymorphisms and article search, table creation, manuscript writing

Carolina Bonilla: Design, conceptualization, manuscript writing

Citation: Silvério CS, Bonilla C. Vitamin D-associated genetic variants in the Brazilian population: Investigating potential instruments for Mendelian randomization. Biomédica. 2024;44:45-53. https://doi.org/10.7705/biomedica.6972

Funding: Carolina de Souza Silverio earned a 2021 Programa Unificado de Bolsas fellowship from the University of São Paulo. Carolina Bonilla receives support from the Brazilian National Council for Scientific and Technological Development.

Received: April 03, 2023; Accepted: January 29, 2024; Published: January 30, 2024

*Corresponding author: Carolina Bonilla, Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr. Arnaldo 455, São Paulo, CEP 01246-903, Brasil Phone: +55 (11) 3061 8610 cxbonilla@usp.br

Conflicts of interest:

Carolina Bonilla was an expert advisor on ancestry and diversity for the Global Health Equity Advisory Board of Roche/Genentech from March 2021 until March 2022. Carolina de Souza Silverio declares no conflict of interest that could be perceived as prejudicial to the impartiality of the reported research.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License