SciELO - Scientific Electronic Library Online

 
vol.31 issue1An extension of the I + Smax preconditioner for the Gauss-Seidel methodPseudo-differential operators defined on Borel measures author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Integración

Print version ISSN 0120-419X

Integración - UIS vol.31 no.1 Bucaramanga Jan./June 2013

 

Integrability of a double bracket system

RAÚL FELIPEa, NANCY LÓPEZ REYESb, *
a Centro de Investigaciones Matemáticas, Callejón Jalisco s/n Mineral de Valenciana,Guanajuato, Gto., México.
b Universidad de Antioquia, Instituto de Matemáticas, Facultad de Ciencias Exactas y Naturales, Medellín, Colombia.


Abstract. A group factorization approach is used to show the integrability of a system of infinite equations of Lax type with double bracket.
Keywords: Lax equations, Brockett hierarchy, completely integrable systems.
MSC2010: 35Q58, 37K10


Integrabilidad de un sistema con doble conmutador

Resumen. Se utiliza un enfoque algebraico basado en la descomposión de grupos para mostrar la integrabilidad de un sistema de infinitas ecuaciones de Lax con doble corchete.
Palabras claves: Ecuación de Lax, jerarquía Brockett, sistema completamente integrable.


Texto Completo disponible en PDF


References

[1] Benítez-Babilonia L., Felipe R. and López N., "Algebraic analysis of a discrete hierarchy of double bracket equations", Differ. Equ. Dyn. Syst. 17 (2009), no. 1-2, 77-90.         [ Links ]

[2] Bloch A.M., Brockett R.W., and Ratius T.S., "Completely integrable gradient flows", Comm. Math. Phys. 147 (1992), 57-74.         [ Links ]

[3] Cassidy Ph.J. and Singer M.F., "A Jordan-Holder Theorem for differential algebraic groups", J. Algebra 328 (2011), 190-217.         [ Links ]

[4] Dickey L.A., Soliton equations and Hamiltonian systems. Advanced Series in Mathematical Physics, 12, New Jersey, 1991.         [ Links ]

[5] Felipe R., "Algebraic aspects of Brockett type equations", Phys. D 132 (1999), no. 3, 287- 297.         [ Links ]

[6] Felipe R. and Ongay F., "Super Brockett Equations: A Graded Gradient Integrable Sys- tem", Comm. Math. Phys. 220 (2001), no. 1, 95-104.         [ Links ]

[7] Felipe R. and Ongay F., "Algebraic aspects of the discrete KP hierarchy", Linear Algebra Appl. 338 (2001), 1-17.         [ Links ]

[8] Kolchin E.R., Differential Algebra and Algebraic Groups. Academic Press, New York, 1976.         [ Links ]

[9] Mulase M., "Complete integrability of the Kadomtsev-Petviashvili equation", Adv. in Math. 54 (1984), no. 1, 57-66.         [ Links ]

[10] Mulase M., "Algebraic theory of the KP equations," Perspective in Mathematical Physics (ed. Penner R. and Yau S.T.), Cambridge, (1994).         [ Links ]

[11] Schiff J., "The Camassa-Holm Equation: A Loop group approach", Phys. D 121 (1998), no. 1-2, 24-43.         [ Links ]

[12] Tsarev S.P., "Factorization of linear differential operators and systems", Algebraic Theory of Differential Equations, in London Math. Soc. Lecture Note Ser. 357, Cambridge Univ. Press, Cambridge, (2009) 111-131.         [ Links ]

[13] Semenov-Tian-Shansky M.A., Integrable Systems and Factorization Problems, Oper. Theory Adv. Appl. 141, Birkhäuser, Basel, 2003.         [ Links ]

[14] Tam T-Y., "Gradiente flows and double bracket equations", Differential Geom. Appl. 20 (2004), no. 2, 209-224.         [ Links ]


*Corresponding author: E-mail :nancylr@matematicas.udea.edu.co.
Received: 24 January 2013, Accepted: 01 May 2013.