SciELO - Scientific Electronic Library Online

 
vol.26 issue2Bibliometric analysis of technologies for municipal solid waste valorization and their potential in the Colombian contextTowards an improved of teaching practice using Sentiment Analysis in Student Evaluation author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Ingeniería y competitividad

Print version ISSN 0123-3033On-line version ISSN 2027-8284

Ing. compet. vol.26 no.2 Cali May/Aug. 2024  Epub June 30, 2024

https://doi.org/10.25100/iyc.v26i2.14003 

Original Research

Antimicrobial effect of polyphenolic extracts present in ananas comosus

Efecto antimicrobiano de los extractos polifenolicos presentes en ananas comosus

Nelson Alfonso Vega1 
http://orcid.org/0000-0002-5013-2146

Dora Clemencia Villada Castillo1 
http://orcid.org/0000-0003-3794-928X

Dorance Becerra Moreno1 
http://orcid.org/0000-0001-8556-9914

1 Universidad Francisco de Paula Santander, Facultad Ciencias Agrarias y del Ambiente, Cúcuta, Norte de Santander, Colombia. nelsonalfonsovc@ufps.edu.co


Abstract

Introduction:

The use of antimicrobials is a permanent challenge as it is constantly confronted with the ability of bacteria to develop resistance mechanisms.

Objective:

The objective of this research was to evaluate the antimicrobial effect of polyphenolic extracts present in Ananas comosus crown.

Materials and Methods:

3.5 kg of Ananas comosus pineapple crown leaves were collected and taken to a tray dryer to reduce humidity, then, they were milled until a fine flour was obtained, for the extraction process of the oleaginous extract a Soxhlet equipment was used, using 70% ethanol as solvent, The identification of phenolic compounds was carried out by ultra-high resolution liquid chromatography with an Orbitrap mass detector. The microbiological analysis was evaluated by the standardized method of diffusion with discs using Mueller-Hinton agar, for which the Staphylococcus aureus strain (ATCC 25923) was used, using oxacillin as a positive control and DMSO as a negative control.

Results:

from the drying obtained, the humidity was reduced by 50%, with which the dry matter obtained was ground and used to carry out the extraction process of the oleaginous extract, obtaining 63 ml of which 27 phenolic compounds were identified. As for the microbiological analysis carried out, inhibition halos varying between 4.5 mm and 6.0 mm were observed.

Conclusion:

Finally, it was concluded that the polyphenols present in the extract of Ananas comosus showed antibacterial activity on Staphylococcus aureus, with a greater inhibition effect observed when a higher concentration of the extract was applied.

Keywords: antioxidant; bacteria; inhibition; pathogen; polyphenol

Resumen

Introducción:

La utilización de antimicrobianos es un desafío permanente ya que se enfrenta en todo momento a la capacidad de las bacterias para desarrollar mecanismos de resistencia.

Objetivo:

el objetivo de esta investigación fue evaluar el efecto antimicrobiano de los extractos polifenolicos presentes en la corona Ananas comosus.

Materiales y Métodos:

se recolectaron 3,5 kg de hojas de coronas de piña Ananas comosus para ello se llevaron a un secador de charolas, para reducir humedad, posteriormente, se realizó la molienda hasta obtener una harina fina, para el proceso de extracción del extracto oleaginoso se utilizó un equipo Soxhlet utilizando etanol al 70 % como solvente, la identificación de compuestos fenólicos se realizó por cromatografía líquida de ultra-alta resolución con detector de masas Orbitrap,el análisis microbiológico se evaluó mediante el método estandarizado de difusión con discos utilizando agar Mueller-Hinton, para lo cual se utilizó la cepa Staphylococcus aureus (ATCC 25923), utilizando como control positivo oxacilina y como control negativo (DMSO).

Resultados:

del secado obtenido se disminuyó la humedad en 50 %, con el cual la materia seca obtenida fue molida y utilizada para realizar el proceso de extracción del extracto oleaginoso obteniendo 63ml del cual se identificaron de 27 compuestos fenólicos. En cuanto al análisis microbiológico realizado, se observaron halos de inhibición variables entre 4,5 mm y 6,0 mm.

Conclusión:

finalmente se concluyó que los polifenoles presentes en el extracto de Ananas comosus presentaron actividad antibacteriana en Staphylococcus aureus observándose mayor efecto de inhibición al aplicar de mayor concentración del extracto.

Palabras clave: antioxidante; bacteria; inhibición; patógeno; polifenol

Introduction

The use of various antimicrobial substances that retard microbial growth 1, and also fight various infections has become a challenge 2, which is why antioxidant substances play a key role in the health of people, as they act in the protection against pathogens, oxidation reactions and even delay the growth of microorganisms 3, It has been proven that antioxidants are substances that are present in fruits and vegetables 4, that is why to reduce the impact generated by free radicals, industries such as cosmetic products have included in their components the use of these substances as mentioned 5 in his research. In the case of fruits, they are potential producers of a large amount of antioxidants that delay oxidative processes 6);(7, the presence of vitamins and other bioactive substances are also main antioxidants 8, which is why authors such as 9); (10, mention in their research that the hydroxyl groups of phenolic compounds are responsible for the deterioration of free radicals during the oxidative process, that is why Ananas comosus (pineapple) is one of the fruits of great importance for its high content of bioactive compounds (vitamin C, β-carotene and phenolic compounds), In addition, the residues generated from pineapple, such as the peel and crown, are an important source of dietary fiber and phenols 11. The prevention of respiratory diseases and others are derived from the trapping of free radicals and reactive oxygen species (ROS), as is the case of polyphenols 12);(13, which is why they are important in the prevention of diseases in the case of S. aureus is one of the microorganisms frequently isolated in hospitals and is also one of the most important nosocomial pathogens, responsible for infections and diseases 14, however this type of microorganisms have acquired importance for having developed resistance to antibiotics 15, which in the 60's induced resistance to methicillin (MRSA) as stated 16, which is why the objective of this research was to evaluate the antimicrobial effect of polyphenolic extracts present in Ananas comosus.

Materials and methods

Collection and adequacy

Pineapple (Ananas comosus) crowns were collected from the waste found in the city's central supply center. 3.5 kg of pineapple crown leaves were taken and cleaned using a 0.9% saline solution and then weighed.

Drying and grinding

For the drying process, a tray dryer, model PS-ECE-001/PE and series GEN-0412-237 was used for 72 hours at 55 °C. to reduce as much humidity as possible, and then they were milled to obtain a fine flour, for which a grain mill was used.

Extraction and identification of phenolic compounds

In the process of obtaining the oleaginous extract, a Soxhlet equipment was used in a solid-liquid extraction for seven hours using 96% ethanol as solvent, then a simple distillation was performed for 60 minutes to obtain the purest extract and evaporate the solvent, then the yield obtained from the extract was calculated using equation 1:

(Equation 1)

%R=PI-PFPI*100

The identification of phenolic compounds was carried out by ultra-high performance liquid chromatography with Orbitrap mass detector (UHPLC-ESI+-Orbitrap-HRMS), the analyzed samples were dissolved in a mixture of methanol: water (1:1 v/v) with formic acid 0.2 % v/v, vortexed (5 min) and sonicated (5 min) and then injected into the chromatographic equipment. As reference standards were used the xanthines: caffeine (Part N° C8960-250G, Sigma-Aldrich), theobromine (Part N° T4500-25G, Sigma-Aldrich) and theophylline (Part N° T1633-25G, Sigma-Aldrich); the catechins: (±)-catechin (C) (Part N° C1788-500MG, Sigma-Aldrich), (-)-epigallocatechin gallate (EGCG) (Part N° E4143-50MG, Sigma-Aldrich), (-)-epicatechin (EC) (Part N° E1753-1G, Sigma-Aldrich), (-)-epicateqin gallate (ECG) (Part N° E3893-10MG, SigmaAldrich), (-)-epigallocateqin (EGC) (Part N° E3768-5MG, Sigma-Aldrich); flavonoids: caffeic acid (Part N° C0625, Sigma-Aldrich), p-coumaric acid (Part N° C9008, Sigma-Aldrich), rosmarinic acid (Part N° 536954-5G, Sigma-Aldrich), quercetin (Part N° Q4951-10G, Sigma-Aldrich), naringenin (Part N° N5893-1G, Sigma-Aldrich), luteolin (Part N° L9283-10MG, Sigma-Aldrich), kaempferol (Part N° K0133-50MG, Sigma-Aldrich), pinocembrin (Part N° P5239, Sigma-Aldrich), apigenin (Part N° A3145-25MG, Sigma-Aldrich); anthocyanins: cyanidin 3-rutinoside (Part No. G36428, Sigma-Aldrich), pelargonidin 3-glucoside (Part No. 53489, Sigma-Aldrich). Ultra-high efficiency liquid chromatograph (UHPLC), Dionex Ultimate 3000 (Thermo Scientific, Sunnyvale, CA, USA), equipped with a binary gradient pump (HP G3400RS), an automatic sample injector (WPS 300TRS) and a thermostatted unit for the column (TCC 3000). The LC-MS interface was electronebulization (ESI) and the mass spectrometer was high resolution with an Obitrap ion current detection system. Operated in positive mode with a capillary voltage of 3.5 kV. A Hypersil GOLD Aq Column (Thermo Scientific, Sunnyvale, CA, USA; 100 x 2.1 mm, 1.9 μm particle size) was used at 30 °C. The mobile phase was A: a solution of 0.2 % v/v formic acid in water, and B: 0.2 % v/v formic acid in acetonitrile. The initial gradient condition was 100 % A, changing linearly up to 100 % B (8 min); it was maintained for 4 min; the return to initial conditions in 1 min; the total run time was 13 min, with three min for post-run. Compound identification was performed using full scan acquisition mode and extraction of ionic currents (EIC) corresponding to the [M+H]+ of compounds of interest, mass measurement with accuracy and precision of Δppm < 1 and using a standard solution-mix of the compounds (certified reference material), for quantification of the analytes of interest the external standardization method was used.

Microbiological analysis

For the microbiological analysis, the methodology proposed by 17 was followed, with some modifications, in which antimicrobial susceptibility was evaluated by the standardized method of diffusion with discs (Bauer-Kirby Method), using Mueller-Hinton agar according to the standards established by the Clinical and Laboratory Standards Institute Clinical and Laboratory Standards Institute. CLSI (2017). For this, the Staphylococcus aureus strain (ATCC 25923) was used, using as positive control oxacillin (10 µL), and as negative control (DMSO), in the elaboration of the treatments of Ananas comosus was implemented the methodology used by. 18 and 19, where the extract was diluted in dimethyl sulfoxide (DMSO), with three replicates for each treatment applied, with the inoculum applied, the plates were prepared at concentrations of 25, 50, 75 and 100 mg/ml respectively see (Table 1)

Table 1 Preparation of treatments. 

Treatments Concentration mg/ml Extract (μl) DMSO (μl)
1 25 250 750
2 50 500 500
3 75 750 250
4 100 1000 0

Likewise the turbidity of the medium was fixed in 0.5 units (1.5x108 UFC/ml) according to the Mc Farland scale pattern, which correlates with the number of bacteria present 20, likewise its absorbance was verified at a wavelength of 625nm, then we proceeded to the sowing in agar, pouring 25 µL of the extract and the controls in filter paper discs (Whatman No. 42), these were placed in the agar plate with a sterile clamp at 15 mm of the edge of the plate, pressing on the agar for its adherence with three repetitions for each applied treatment. 42), these were placed on the agar plate with sterile forceps 15 mm from the edge of the plate, pressing on the agar for adherence with three replicates for each treatment applied, the plates were incubated at 37 °C for 24 h in an inverted manner, then the inhibition halos were measured including the diameter of the discs.

Statistical analysis

A 1-factor Anova statistical analysis was performed on the data obtained in each treatment, determining the significant differences between them, for which the inhibition halos present in each treatment were used as a parameter, with a confidence base of 95 % and an error percentage of 5 %, showing the treatment with the best results in the process.

Results and discussions

After finishing the drying process of the pineapple crowns, 1766 g of pineapple crown were obtained.

%R=3500-17663500*100=49.5%

With which a yield close to 50 % was obtained, later the obtained material was milled to obtain 900 g of fine flour, observing a decrease in the humidity present in the pineapple crown, which according to 21, the humidity depends on the irrigation before the harvest and by the state of conservation of the fruit.

Extraction and identification of phenolic compounds

According to 22,23 solvent extraction is the most common method for the extraction of phenolic compounds, for which ethanol was used as solvent, using the Soxhlet extraction method, which, according to 24, can be attributed several factors that influence the extraction yield, Among these are the extraction temperature, extraction time and the type of solvent used, in this process it was possible to obtain a volume of 63 ml of extract of dried leaves of pineapple crown, in this case 96% ethanol was used as solvent. An HPLC/DAD type chromatographic analysis was performed using a 25 ml sample of the extract obtained, where a qualitative analysis was performed to identify the presence of phenolic compounds present in the extract, which are reported below (Table 2).

Table 2 Phenolic compounds identified in pineapple (Ananás comosus). 

Compond tR, min NMC*, mg Kg-1 Concentration in samples, mg kg-1
993315-01-EB Sample of pineapple crown extract Ananas comosus
Theobromine 2,3 0,1 28
Theophylline 2,5 0,1 51
Epigallocatechin (EGC) 2,6 0,1 0,5
Catechin (C) 2,7 0,1 <0,1
Epicatechin (EC) 2,9 0,1 1,7
p-Hydroxybenzoic acid 2,9 0,1 < 0,1
Caffeine 2,8 0,1 4899
Caffeic acid 3,7 0,1 < 0,1
Vanillic acid 2,9 0,1 108
Epigallocatechin gallate (EGCG) 3,0 0,1 <0,1
p-coumaric acid 3,3 0,1 193
Epicatechin gallate (ECG) 3,4 0,1 <0,1
Ferulic acid 3,4 0,1 9,5
Quercetin 3,2 0,1 52
Rosmarinic acid 3,7 2,0 < 2,0
Cianidina 3,5 0,1 1,0
Luteolin 4,2 0,1 0,4
Kaempferol 4,6 0,1 0,1
trans-cinnamic acid 4,4 0,4 19
Naringenin 4,6 0,1 0,3
Apigenin 4,5 0,1 0,6
Pinocembrina 5,5 0,1 0,1
ursolic acid 8,4 0,1 6,9
Cyanidin 3-rutinoside 2,7 0,1 < 0,1
Pelargonidinagg 3-glucoside 2,8 0,1 < 0,1
Kaempferol 3-glucoside 3,5 0,1 0,8
Routine 3,2 0,1 21
Gallic acid 1,9 0,1 < 0,1

Twenty-seven phenolic compounds were identified, among them caffeine, vanillic acid and p-coumaric acid, these being the ones with the highest concentration. In addition, other structures related to polyphenols, such as gallic acid and quercetin, were detected, These compounds have a high potential to be used as antioxidants and antibacterials, as pointed out in previous studies by 25, and when these results were compared with the extraction process carried out by 26 in which a total of 27 polyphenolic compounds were identified, gallic acid, vanillic acid, protocatechuic acid, 2,5-dihydroxybenzoic acid and 4-hydroxybenzoic acid predominated. In particular, rosmarinic acid was reported as the compound with the highest concentration present in the extract, which is a polyphenol known for its antioxidant properties and has been associated with various health benefits, which according to Ramirez et al. 27, the concentration of rosmarinic acid (RA) increases with increasing K, which can have a significant impact on the phenolic composition, contributing to the antioxidant capacity 28, likewise it can be mentioned that one of the possible mechanisms proposed for the antimicrobial effect of phenolic compounds is that they can break the integrity of the membrane and cause loss of cell integrity and eventual cell death 29), (30.

Microbiological analysis

The absorbance of the S. aureus culture was measured, obtaining an average value of 0.142 on the McFarland scale, which is within the range established by 31, in his research on the validation of the membrane filtration technique. The treatments applied and the inhibition halos generated by the Ananas comosus extract in its different concentrations and the replicates of each treatment against the S aureus strain, including the positive and negative controls corresponding to each test, were also observed. Figure 1.

Figure 1 Inhibition halos present in each treatment applied per replicate. 

The diameters of each halo generated were also measured and recorded (Table 3).

Table 3 Halo decade diameter obtained for each replicate. 

Treatments Diameter obtained in mm for each replica Average of measurements
R1 R2 R3
T1 25 μl 0 0 0 0
T2 50 μl 5 4 4,5 4,5
T3 75 μl 5 6 6 5,6
T4 100 μl 6,2 6 6 6,0
Positive control 43,5 45 41 43,1

It should be noted that the evaluation process was only focused on observing the possible inhibition effect, so the dose-response analysis was not performed, then the average of the inhibition halos generated by the pineapple crown extract in S aureus was calculated, obtaining diameters ranging between 4.5 mm and 6, 0 mm, where the analysis of variance showed that with respect to the positive control and the applied treatments determined the difference, taking into account the p-value, which according to 32, this value indicates the probability of obtaining by chance, a difference greater than that observed in the process, this is how the obtained value of p = 5. 80E-13, which was less than 0.05, so there is a significant difference in the analysis of variance of inhibition halos (Table 4).

Table 4 Analysis of variance of the inhibition halos. 

Origin of variances Sum of squares Degrees of freedom Mean squares F Probability Critical value for F
Intergroup 3740,56 4 935,14 999,08 5,80E-13 3,47
Within the groups 9,36 10 0,93
Total 3749,92 14      

On the other hand, the microbiological analysis carried out showed a variability in the inhibition halos which is significant because according to 33 previous results of inhibition halos of 28 and 18 mm have been reported, as reported by 34 and 35, as well as in the research carried out by 36, establishes that bacteria tend to produce resistance mechanisms against antimicrobials, which in the case of Staphylococcus aureus are related to the activation of cell wall synthesis, with the production of proteins, which once these resistance mechanisms are activated, create a greater firmness against the applied agent. It was also observed that treatment three corresponds to the highest concentration of pineapple crown extract, being the most representative in terms of inhibitory capacity, which indicates a gradual inhibition capacity, with a smaller inhibition halo being observed at lower concentrations of the extract. These results are consistent with the findings reported by 37, who indicated that treatments with higher concentrations usually generate larger inhibition halos, demonstrating a direct and effective action in the suppression of pathogenic microorganisms, so in this research it is established that the antimicrobial activity of the extract is proportional to its concentration.

Conclusions

The polyphenols present in the extract of pineapple crowns Ananas comosus presented an antibacterial activity on Staphylococcus aureus, observing a greater inhibition effect when applying a higher concentration of pineapple crown extract Ananas comosus on the sensidisc in Staphylococcus aureus, suggesting that the antimicrobial activity of the extract is proportional to its concentration.

Acknowledgments

Thanks to the Universidad Francisco de Paula Santander for their valuable collaboration.

References

1. Castillo Mompié A, Pascual Sanchez YM, CunhaNune LC, De la Paz Lorente C, Cañete Aguila F. Evaluación de la actividad antimicrobiana de extractos de hojas y semillas de Morinda citrifolia L. (noni). Cubana de Plantas Medicina. 2014; 19(4):374-382. [ Links ]

2. Azuero A, Jaramillo Jaramillo C, San Martin D, D'Armas Regnault H. Análisis del efecto antimicrobiano de doce plantas medicinales de uso ancestral en Ecuador / Analysis of antimicrobial effect of twelve medicinal plants of ancient use in Ecuador. Cienc Unemi. 2016; 9(20):11-8. Doi: 10.29076/issn.2528-7737vol9iss20.2016pp11-18p [ Links ]

3. Leyva JM, Pérez Carlón JJ, González Aguilar GA, Esqueda M, Ayala Zavala JF. Funcionalidad antibacteriana y antioxidante de extractos hidroalcohólicos de Phellinus merrillii. Mexicana de Micología. 2013;37:11-17. [ Links ]

4. Vega Contreras NA, Torres Salazar ML. Evaluación de compuestos fenolicos de (Citrus sinensis) y su capacidad antioxidante. Ciencia en Desarrollo. 2021;12(2):109-117. Doi: 10.19053/01217488.v12.n2.2021.11635 [ Links ]

5. Mendes Silva T, Da Silva Andrade R, Ootani MA, Mendes P, Da Silva M, Souza K, et al. Potencial biotecnológico de los carotenoides producidos por microorganismos extremófilos y perspectivas de aplicación para la industria cosmética. Avances en Microbiología. 2020;10(8):397-410. DOI: 10.4236/aim.2020.108029 [ Links ]

6. Cheok CY, Mohd Adzahan N, Abdul Rahman R, Zainal Abedin NH, Hussain N, Sulaiman R, et al. Current trends of tropical fruit waste utilization. Critical reviews in food science and nutrition. 2018;58(3):335-361. Doi: 10.1080/10408398.2016.1176009 [ Links ]

7. Ben Othman S, Jõudu I, Bhat R. Bioactivos a partir de desechos agroalimentarios: conocimientos actuales y desafíos futuros. Moléculas. 2020;25(3):510. Doi: 10.3390/molecules25030510 [ Links ]

8. Grande Tovar C, Araujo Pabón L, Flórez López EAC. Determinación de la actividad antioxidante y antimicrobiana de residuos de mora (Rubus glaucus Benth). Informador Técnico. 2021;85(1):64-82. Doi: 10.23850/22565035.2932 [ Links ]

9. Mosquera OM, González LM, Cortés YJ, Camargo JC. Caracterización fitoquímica, determinación del contenido de lignina y la actividad antioxidante de los culmos de Guadua angustifolia Kunth. Facultad de Ciencias Básicas. 2015;11(2):124-135. Doi: 10.18359/rfcb.1301 [ Links ]

10. Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry. 2020;44(9):e13394. Doi: 10.1111/jfbc.13394 [ Links ]

11. Larrauri JA, Rupérez P, Calixto FS. Cáscara de piña como fuente de fibra dietética con polifenoles asociados. Química Agrícola y Alimentaria. 1997;45(10):4028-4031. Doi: 10.1021/jf970450j [ Links ]

12. Mosquera OM, González LM, Cortés YJ, Camargo JC. Caracterización Fitoquímica, Determinación del Contenido de Lignina y la Actividad Antioxidante de los Culmos de Guadua Angustifolia Kunth. Revista Facultad de Ciencias Básicas. 2016;11(2):124. Doi: 10.18359/rfcb.1301. [ Links ]

13. Samaniego I, Brito B, Viera W, Cabrera A, Llerena W, Kannangara T, et al. Influence of the maturity stage on the phytochemical composition and the antioxidant activity of four Andean blackberry cultivars (Rubus glaucus Benth) from Ecuador. Plants. 2020;9(8):1027. Doi: 10.3390/plants9081027 [ Links ]

14. Hiramatsu K, Cui L, Kuroda M, Ito T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends in microbiology. 2001;9(10):486-493. Doi: 10.1016/S0966-842X(01)02175-8 [ Links ]

15. Cervantes García E, García González R, Salazar Schettino P. Características generales del Staphylococcus aureus. Mexicana de Patología Clínica y Medicina de Laboratorio. 2014;61(1):28-40. [ Links ]

16. Velasco V, Mallea A, Bonilla A, Campos J, Rojas-García PPDRALA, De Cepas De Staphylococcus Aureus ELCDSDLCD. Revista chilena de ciencias agrícolas y animales. 2022;38:234-40. Doi: 10.29393/chjaa38-23arvp50023 [ Links ]

17. Pineda Higuita SE, Posada López GA, Giraldo Quintero L, Pulgarín Bedoya L. Resistencia a antibióticos del Staphylococcus aureus en estudiantes de una facultad de odontología. Habanera de Ciencias Médicas. 2020 septiembre;19(6):e2931. [ Links ]

18. Allyn OQ, Kusumawati E, Nugroho RA. Antimicrobial activity of Terminalia catappa brown leaf extracts against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853. F1000Research. 2018;7:1406. Doi: 10.12688/F1000RESEARCH.15998.1 [ Links ]

19. Pastrana Puche YI, Durango Villadiego AM, Acevedo Correa D. Efecto antimicrobiano del clavo y la canela sobre patógenos. Biotecnología en el sector agropecuario y agroindustrial. 2017;15(1):56-65. Doi: 10.18684/BSAA(15)56-65 [ Links ]

20. Fiallos Núñez JE. Determinación de la correlación entre métodos visuales ópticos y difusión en placa en el crecimiento de Escherischia coli. Trabajo grado Ingeniería Bioquímica. Ambato, Ecuador: Universidad Técnica de Ambato; 2017. [ Links ]

21. Montoya E, Mayta Huiza DA, Llamoca Domínguez E, Choquecahua Mamani D, Otero Nole K. Comparación del proceso de secado de los residuos de cáscara de tuna y corona de piña. Ciencia y Tecnología para el Desarrollo-UJCM. 2019;5(9):4-9. Doi: 10.37260/rctd.v5i9 [ Links ]

22. Rocchetti G, Blasi F, Montesano D, Ghisoni S, Marcotullio MC, Sabatini S, et al. Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Res Int. 2019;115:319-27. Doi: 10.1016/j.foodres.2018.11.046 [ Links ]

23. Dzah CS, Duan Y, Zhang H, Wen C, Zhang J, Chen G, et al. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020;35(100547):100547. Doi: 10.1016/j.fbio.2020.100547 [ Links ]

24. Zurita Morales KF. Extracción hidroalcohólica de los compuestos bioactivos del mortiño (Vaccinium meridionale) en función de polifenoles y capacidad antioxidante. Maestría En Agroindustria Mención Tecnología De Alimentos. Latacunga, Ecuador: Universidad Técnica de Cotopaxi (UTC).; 2021. [ Links ]

25. Ferrer M. Uso de nuevos materiales antimicrobianos sostenibles para envasado alimentario. Trabajo de grado Ciencia y Tecnología de los Alimentos. Valencia; 2022. [ Links ]

26. Marrero Delange D, Morales Rico CL. Identificación de ácidos polifenólicos en el extracto metanólico de las hojas de Terminalia catappa Linn. Cubana de Plantas Medicinales. 2016;21(2):223-233. [ Links ]

27. Ramírez Aragón MG, Borroel García VJ, Salas Pérez L, López Martínez JD, Gallegos Robles MA, Trejo Escareño HL. Ácido rosmarínico, fenólicos totales y capacidad antioxidante en tres variedades de Ocimum basilicum L. Con diferentes dosis de potasio. Polibotánica. 2019;(47):89-98. Doi: 10.18387/polibotanica.47.7 [ Links ]

28. Kwee EM, Niemeyer ED. Variaciones en la composición fenólica y propiedades antioxidantes entre 15 cultivares de albahaca (Ocimum basilicum L.). Química de los Alimentos. 2011;128(4):1044-1050. Doi: 10.1016/j.foodchem.2011.04.011 [ Links ]

29. Bouarab L, Pascal D, Hicham F, Bouajila J, Oulahal N. Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture. 2019;99(4):1457-74. Doi: 10.1002/jsfa.9357 [ Links ]

30. Lima MC, Paiva de Sousa C, Fernandez-Prada C, Harel J, Dubreuil JD, de Souza EL. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb Pathog. 2019;130:259-70. Doi: 10.1016/j.micpath.2019.03.025 [ Links ]

31. Navarro EE, Salcedo M, Muñoz M, Mendoza R. Validación de la técnica de recuento de Coliformes Totales y E. coli por el método filtración de membrana en el laboratorio de control de calidad de Aguas de Cartagena SA ESP. Ciencia y Salud Virtual. 2010;2(1):21-30. Doi: 10.22519/21455333.61 [ Links ]

32 Molina Arias M. ¿Qué significa realmente el valor de p? Rev Pediatr Aten Primaria. 2017;19:377-81. [ Links ]

33. Velasco Garcia WJ, Pabón Baquero LC, Hernández Rodríguez P. Potencial antimicrobiano de extractos de plantas medicinales y sus mezclas frente a bacterias asociadas con conjuntivitis. Nova. 2021;19(36):95-108. Doi: 10.22490/24629448.5294. [ Links ]

34. Efstratiou E, Hussain AI, Nigam PS, Moore JE, Ayub MA, Rao JR. Actividad antimicrobiana de los extractos de pétalos de Calendula officinalis contra hongos, así como patógenos clínicos Gram negativos y Gram positivos. Terapias complementarias en la práctica clínica. 2012;18(3):173-176. Doi: 10.1016/j.ctcp.2012.02.003. [ Links ]

35. Farjana A, Zerin N, Kabir MS. Actividad antimicrobiana de extractos de hojas de plantas medicinales contra bacterias patógenas. Asia Pacífico de Enfermedades Tropicales. 2014;4:S920-S923. Doi: 10.1016/S2222-1808(14)60758-1 [ Links ]

36. Díaz Plazas LM, Garzón Truque DI. Capacidad antimicrobiana del extracto de la parte aérea de Tropaeolum tuberosum (mashua) frente a Staphylococcus aureus y Bacillus cereus. Trabajo Ingeniería de Alimentos. Bogotá D.C.: Universidad de La Salle; 2017. [ Links ]

37. Evangelista Martínez Z, Reyes Vázquez N, Rodríguez Buenfil I. Evaluación antimicrobiana de aceites esenciales de plantas contra microorganismos patógenos: Estudio in vitro del aceite de orégano combinado con conservadores alimenticios conve. Acta universitaria. 2018;28(4):10-18. Doi: 10.15174/au.2018.1817 [ Links ]

Notes:

1How to cite? Vega, N.A., Villada, D.C., Becerra, D. Antimicrobial effect of polyphenolic extracts present in ananas comosus Ingeniería y Competitividad, 2024, 26(2) e-20914003. https://doi.org/10.25100/iyc.v26i2.14003

Received: April 29, 2024; Accepted: June 20, 2024

Conflict of interest:

none declared

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License