SciELO - Scientific Electronic Library Online

 
vol.26 issue2Characterization of small companies’ supply chains in BogotáProduction of industrial-interest colorants in microalgae and cyanobacteria: leveraging nutrient dynamics and photoperiod optimization author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Ingeniería y competitividad

Print version ISSN 0123-3033On-line version ISSN 2027-8284

Ing. compet. vol.26 no.2 Cali May/Aug. 2024  Epub July 31, 2024

https://doi.org/10.25100/iyc.v26i2.14019 

Original Research

Potential use of methane gas from the Villavicencio sanitary landfill, Colombia

Potencial de aprovechamiento del gas metano generado en el relleno sanitario del municipio de Villavicencio, Colombia

Luisa F Ramírez-Ríos1 
http://orcid.org/0000-0002-0973-3847

Dorance Becerra-Moreno2 
http://orcid.org/0000-0001-8556-9914

Judith Yamile Ortega-Contreras2 
http://orcid.org/0000-0002-8717-434X

1 Universidad de los Llanos, Escuela de Ingeniería, Facultad de Ciencias Básicas e Ingeniería, Villavicencio, Meta, Colombia. lfernandaramirez@unillanos.edu.co

2 Universidad Francisco de Paula Santander, Facultad de Ciencias Agrarias y del Ambiente, San José de Cúcuta, Norte de Santander, Colombia.


Abstract

The study evaluates the generation and recovery capacity of methane at the Villavicencio Landfill in Colombia, using the LandGEM model. It shows a significant increase in methane generation, rising from about 1.5 million cubic meters in 2010 to over 8.5 million in 2020, indicating a growing urgency to implement effective mitigation measures. It was estimated that by the year 2042, the electrical energy production from methane could be 248.067 kW/day, capable of supplying about 43.705 homes monthly. Additionally, thermal energy generation would be 468.572 kWh/day, useful for industrial processes. Management scenarios were proposed, where, for example, operational optimization could increase electric production to 342.333 kW/day, benefiting more than 60.000 homes monthly. The conclusions highlight the direct correlation between the amount of waste and methane generation, and the significant potential for converting these emissions into energy, pointing towards regional energy self-sufficiency and sustainability. Methane recovery represents a valuable alternative to the dependence on fossil fuels and for the development of a circular economy.

Keywords: air quality; Landfill gas; Greenhouse gas; Municipal solid waste; LandGEM.

Resumen

El estudio evalúa la generación y capacidad de recuperación de metano en el Relleno Sanitario de Villavicencio, Colombia, mediante el modelo LandGEM. En donde se observa un aumento significativo en la generación de metano, pasando de alrededor de 1,5 millones de metros cúbicos en 2010 a más de 8,5 millones en 2020, lo que indica una creciente urgencia por implementar medidas de mitigación efectivas. Se estimó que, para el año 2042, la producción de energía eléctrica del metano podría ser de 248.067 kW/día, capaz de abastecer a unos 43.705 hogares mensualmente. Asimismo, se generaría energía térmica de 468.572 kWh/día, útil para procesos industriales. Se plantearon escenarios de gestión, donde, por ejemplo, la optimización operacional podría aumentar la producción eléctrica a 342.333 kW/día, beneficiando a más de 60.000 hogares mensualmente. Las conclusiones resaltan la correlación directa entre la cantidad de residuos y la generación de metano, y el significativo potencial de convertir estas emisiones en energía, apuntando hacia la autosuficiencia y sostenibilidad energética regional. El aprovechamiento del metano representa una alternativa valiosa frente a la dependencia de combustibles fósiles y para el desarrollo de una economía circular.

Palabras clave: calidad del aire; Gases de vertedero; Gases de efecto invernadero; Residuos sólidos urbanos; LandGEM

Introduction

In the global effort for sustainable development, the investigation of renewable energy alternatives is fundamental 1 . Proper management of urban solid waste and mitigation of greenhouse gases are critical issues in this context 2. This study addresses these needs by exploring the potential for methane recovery at the Villavicencio Landfill, following the sustainability approach of the United Nations Sustainable Development Goals 3.

Methane, a potent greenhouse gas, is generated in landfills through the anaerobic decomposition of organic waste 4. Capturing and utilizing this gas not only reduces greenhouse gas emissions but also provides a viable source of renewable energy 5. Various studies have highlighted the importance of strategies for greenhouse gas mitigation and the conversion of waste into energy resources 6)(7)8)(9) .

This study is based on the methodology of the LandGEM model 10) (11) , adapted and validated by several researchers to estimate methane generation in different contexts 12) (13) (14) (15) . By analyzing methane emissions and their energy potential, it seeks to fill the existing gap in the literature regarding the application of these techniques in Colombia, where specific research on methane recovery in landfills is still limited. This research not only examines methane generation but also explores its conversion into usable energy, aligning with previous studies that emphasize the conversion of waste into energy resources as a practical solution to the growing problem of urban solid waste 16) (17) (18) .

Finally, the results of this research demonstrate a commitment to environmental sustainability and energy efficiency, providing perspectives based on empirical data for waste management and energy policy in Colombia. Methane recovery is expected to contribute significantly to local energy matrices, expanding on the premise of previous studies 19) (20) (21) (22) , and presenting optimized scenarios for energy recovery in the Colombian context.

Methodology

Methane Emissions Estimation

For the calculation of methane emissions at the Villavicencio Municipal Landfill in Colombia, the LandGEM version 3.02 model was used. This model, developed by the Control Technology Center of the United States Environmental Protection Agency (EPA), has been widely used for estimating gas emissions at landfills in the United States 23) (24) , Asia 25) (26) (27) , South America 1) (16) (28) , and Africa 19) (29) (30) .

This automated estimation model is designed to calculate the emission rates of total landfill gases, methane, carbon dioxide, and non-methane organic compounds from municipal solid waste landfills 10. LandGEM is based on a first-order kinetic decomposition model of organic matter, where the default values are derived from empirical data collected from various landfills in the US 11.

The followed methodology applied the first-order decomposition equation (Eq. 1), which estimates the annual methane emissions of the year in question 31.

QCH4=i=1nj=0,11K.L0.Mi10.e-k.tij (Eq. 1)

In this equation, QCH4 represents the annual methane generation in m3/year, k is the methane generation rate (year-1), L0 is the methane generation potential per unit mass of waste deposited (m3/Mg), Mi is the mass of waste deposited in year i (Mg), and tij is the age of section j of the waste mass i.

For the selection of parameters, the study began with the range of values suggested in the LandGEM user's manual, with a methane generation rate (k) varying between 0,02 and 1,7 per year 10. The values of the methane generation potential (L0) were estimated in a range of 96 to 170 m3/Mg of waste 10. To calculate the annual solid waste disposal data (Mi), the population projection year after year during the estimated useful life of the landfill was used, multiplied by the per capita production of solid waste for the area under study. To project the population, the arithmetic method (Ec. 2) was adopted, after verifying that it showed the highest correspondence for the study area with the census data from 2005 and 2018 provided by the National Administrative Department of Statistics (DANE), as established by the Technical Regulation of the Drinking Water and Basic Sanitation Sector 32. The per capita production of solid waste was obtained from secondary statistics of the Superintendency of Public Home Services 33) (34) .

PfPuc+Puc-PciTuc-Tc*Tf-Tuc (Eq. 2)

Where Pf is the population (inhabitants) corresponding to the year for which the population is to be projected, Puc is the population corresponding to the last census year with information, Pci is the population corresponding to the initial census year with information, Tuc is the year corresponding to the last census with information, Tci is the year corresponding to the initial census with information, and Tf is the year to which the information is to be projected.

Energy Recovery Potential

To evaluate the potential energy generation, the chemical energy production from CH4 was initially estimated using Eq. 3 35.

CH4-CE=Q¯CH4.LHVCH4 (Eq. 3)

Where CH4-CE is the chemical energy production from methane in MJ/day, QCH4 is the average methane flow in m³/day, and LHVCH4 is the lower heating value of methane in MJ/m³ (35 MJ/m3) 27.

To calculate the generation of electricity from methane, Eq. 4 was applied 35.

CH4-EE=CH4-CE.ηMEE.CC (Eq. 4)

With CH4-EE representing the daily production of electricity from methane in kW/day, ηMEE is the efficiency of the electrical power generation engine in percentage (45 %), and CC is the conversion factor from MJ to kWh, which is equal to 0,2778. The efficiency for methane electricity generation is within the typical range for CHP systems using internal combustion engines or gas turbines 36.

Furthermore, the production of thermal energy through CH4 was determined using Eq. 5 35.

CH4-TE=CH4-CE.ηMTE.CC (Eq. 5)

Where CH4-TE is the production of thermal energy from methane in kWh/day, and ηMTE is the efficiency of the thermal energy generation engine (50 %). The thermal efficiency of 50 % for CHP systems utilizing methane is supported by existing literature on cogeneration technologies. According to the United States Environmental Protection Agency 36 (EPA, 2017), CHP systems using natural gas or biogas can achieve thermal efficiencies of up to 50 % under optimal conditions. Finally, the potential evolution in methane generation and utilization was considered, reflected in two prospective scenarios that consider recycling practices and operational changes in the landfill: 1) Maximization of Recycling and Composting, and 2) Operational Optimization of the Landfill.

Results and discussion

Study area

The landfill studied is located in the San Juan Bosco district of the municipality of Villavicencio, Meta, Colombia, managed by a public services company that provides urban sanitation services (street sweeping and cleaning of public spaces, and collection and transportation of residential and commercial solid waste). As of 2012, this landfill had used only 9,38 % of its capacity, maintaining a reserve of 5.435.530 m³ 33.

It benefits a total of 23 municipalities across the departments of Boyacá (Almeida, Chivor, Garagoa, and San Luis de Gaceno), Cundinamarca (Guayabetal, Medina, Paratebueno, and Quetame), and Meta (Acacías, Barranca de Upía, Cabuyaro, Castilla La Nueva, Cubarral, Cumaral, El Castillo, Granada, Guamal, Puerto Gaitán, Puerto López, Restrepo, San Carlos De Guaroa, Villavicencio, and Monterrey) 37.

Methane Emissions Estimation

Methane emissions from the landfill were calculated using a methane generation rate (k) of 0,05 years-1 (14, corresponding to an average annual precipitation of 310 mm at the IDEAM's Apiay Air Base meteorological station between September 2013 and January 2016 38. L0 was set at 100 m3/Mg 14, based on the average composition of solid waste in Colombia; consisting of organic waste such as food and garden waste (59 %), plastics (13 %), paper and cardboard (9 %), and glass and metals at 2% and 1% respectively. Other wastes constitute 16% 16) (39) .

The per capita solid waste production was calculated by dividing the total volume of waste received at the landfill in the years 2005 and 2018 33) (34) by the combined population of the 23 contributing municipalities 40) (41) , resulting in an average value of 0,1579 tonnes per inhabitant. The arithmetic method was chosen for population projection until 2041, the projected year of landfill closure 42, based on census data from 2005 and 2018 provided by the DANE 40) (41) .

Using these values, the population year by year, the total solid waste disposed of in the landfill, and the annual methane emissions were estimated. Table 1 presents these results for the operating period of the landfill from 2008 to 2041 (Annex 1 presents results for even years after the closure of the disposal site and the accumulated generation until 2148). Likewise, Figure 1 shows the generation of methane from the beginning of the landfill's operation until 2148, the year in which it is expected that all organic matter will have degraded, and gas production will cease.

Table 1 Methane Generation at the Villavicencio Municipal Landfill 

Year Population MSW generated (Mg/year) Methane generated (Mg/year) Methane generated (m3/year)
2008 531.462 156.661 0 0
2009 539.884 158.997 511 765.956
2010 548.307 161.334 1.005 1.505.978
2011 556.730 163.670 1.482 2.221.335
2012 565.153 166.007 1.944 2.913.224
2013 689.711 190.601 2.390 3.582.796
2014 700.466 193.481 2.895 4.339.959
2015 711.221 196.361 3.385 5.074.275
2016 721.977 199.241 3.861 5.786.860
2017 732.732 202.121 4.322 6.478.773
2018 363.566 221.220 4.771 7.151.021
2019 370.507 224.358 5.260 7.883.864
2020 377.448 227.496 5.735 8.596.308
2021 384.389 230.634 6.197 9.289.349
2022 391.329 233.773 6.647 9.963.931
2023 398.270 236.911 7.086 10.620.962
2024 405.211 240.049 7.513 11.261.291
2025 412.152 243.187 7.930 11.885.733
2026 419.093 246.326 8.336 12.495.064
2027 426.034 249.464 8.733 13.090.024
2028 432.974 252.602 9.121 13.671.311
2029 439.915 255.740 9.500 14.239.590
2030 446.856 258.878 9.871 14.795.496
2031 453.797 262.017 10.234 15.339.634
2032 460.738 265.155 10.589 15.872.580
2033 467.679 268.293 10.938 16.394.877
2034 474.620 271.431 11.280 16.907.044
2035 481.560 274.570 11.615 17.409.574
2036 488.501 277.708 11.944 17.902.944
2037 495.442 280.846 12.267 18.387.593
2038 502.383 283.984 12.585 18.863.949
2039 509.324 287.123 12.898 19.332.415
2040 516.265 290.261 13.205 19.793.381
2041 523.204 293.399 13.508 20.247.208

Source: Adapted from LandGEM

Figure 1 Methane Emission at the Villavicencio Landfill, Meta 

The temporal analysis of methane generation at the landfill, presented in Table 1 and Figure 1, reveals a constant increase in the production of this greenhouse gas from its commencement in 2008 until the cessation of operations in 2041. It is observed that methane generation increases proportionally to the mass of waste at the site, reaching a maximum annual output of 20.694.244 m³ in 2042 (equivalent to 13.806 Mg), and a total accumulated volume of 796.367.807 m³ by the year 2148 when the production of this gas concludes (equivalent to 531.295 Mg).

After the landfill's closure in 2041, the accumulated waste at the site amounts to 7.963.899 Mg, and although the acceptance of waste ceases, methane continues to be generated due to the anaerobic decomposition of the organic matter present 43. This is consistent with studies like those from India and China 20) (27) , which simulated CH4 emissions from landfills and also reported significant emissions post-closure, reflecting a common phenomenon in the management of urban solid waste.

The progressive decrease in methane generation after 2041 suggests that, although biological activity continues, the rate of decomposition reduces as the more readily biodegradable material is depleted. This behavior is akin to observations in a study from China 27, where the methane generation potential decreases over time in landfills.

In terms of environmental impact and climate change, the cumulative emissions are significant. For instance, in 2010, 161.334 Mg of waste was accepted, and approximately 1.505.978 m³ of methane was generated. Ten years later, in 2020, with 227.496 Mg of waste accepted, methane generation had almost sextupled to 8.596.308 m³. This increase highlights the compounding effect of growth in waste generation and the accumulation of methane over time. Considering that methane has a global warming potential 28 times greater than CO2 over a 100-year horizon 44, these volumes represent a considerable contribution to the greenhouse effect and the need for effective mitigation strategies.

Comparatively, the dynamics of methane generation at the Villavicencio Landfill show similar patterns to those reported in other latitudes, such as Iran 13, Brazil 45, India 46, and Trinidad and Tobago 15, among others. Factors such as the composition of the waste, the climatic and management conditions of the landfill, as well as time, are consistent variables that influence methane generation, as reflected in global landfill emissions studies 47.

It is pertinent to highlight that, when comparing the volumes of methane generated and the waste disposed of year after year, the correlation is direct and practically linear until the closure of the landfill, which is a constant in the literature, as indicated by various sources 43. This increase and subsequent gradual post-closure decrease is a behavior that must be considered for the design of waste management systems and environmental policies, where methane capture and treatment should not only be a strategy during the operational life of the landfill but also post-operation, as an effective mechanism for reducing the contribution of landfills to global climate change.

Energy Recovery Potential

Based on the projected methane emissions, the potential for methane energy generation under current management conditions was assessed. Additionally, this potential was calculated under two hypothetical management scenarios to estimate the future impact of possible political decisions on solid waste management in the region and the country.

The scenarios considered were: Scenario 1, a 30 % increase in composting that would reduce methane production by decreasing the amount of waste destined for the landfill by 15 %, considering an initial proportion of 59 % compostable waste 16) y 39. Scenario 2, a 15 % increase in methane capture efficiency and a 20 % increase in methane generation due to operational optimization of the landfill, resulting in 38 % more utilizable methane. Table 2 presents the results of the energy generation potential under the scenarios evaluated for the period 2008 - 2041 (Annex 1 and 2 presents the results for the even years after the closure of the disposal site and the total accumulated for the year 2148).

Table 2 Energy Generation Potential at the Villavicencio Municipal Landfill 

Year CURRENT CONDITIONS SCENARIO 1 SCENARIO 2
[CH4-CE] (MJ/día) [CH4-EE] (kW/day) [CH4-TE] (kWh/day) [CH4-CE] (MJ/día) [CH4-EE] (kW/day) [CH4-TE] (kWh/day) [CH4-CE] (MJ/día) [CH4-EE] (kW/day) [CH4-TE] (kWh/day)
2008 0 0 0 0 0 0 0 0 0
2009 73.448 9.182 10.202 62.431 7.804 8.672 101.358 12.671 14.079
2010 144.409 18.053 20.058 122.748 15.345 17.050 199.284 24.913 27.681
2011 213.005 26.628 29.586 181.054 22.634 25.148 293.946 36.746 40.829
2012 279.350 34.922 38.802 237.448 29.683 32.981 385.503 48.192 53.546
2013 343.556 42.948 47.720 292.022 36.506 40.562 474.107 59.268 65.853
2014 416.160 52.024 57.805 353.736 44.221 49.134 574.301 71.793 79.770
2015 486.574 60.827 67.585 413.588 51.703 57.447 671.473 83.941 93.268
2016 554.904 69.369 77.076 471.669 58.963 65.515 765.768 95.729 106.365
2017 621.252 77.663 86.292 528.064 66.013 73.348 857.328 107.175 119.083
2018 685.714 85.721 95.246 582.857 72.863 80.959 946.286 118.295 131.439
2019 755.987 94.506 105.007 642.589 80.330 89.256 1.043.262 130.418 144.909
2020 824.304 103.046 114.496 700.658 87.589 97.321 1.137.539 142.204 158.004
2021 890.759 111.354 123.726 757.146 94.651 105.168 1.229.248 153.668 170.743
2022 955.445 119.440 132.711 812.129 101.524 112.805 1.318.515 164.828 183.142
2023 1.018.448 127.316 141.462 865.681 108.219 120.243 1.405.459 175.696 195.218
2024 1.079.850 134.992 149.991 917.872 114.743 127.492 1.490.193 186.289 206.988
2025 1.139.728 142.477 158.308 968.769 121.106 134.562 1.572.824 196.619 218.465
2026 1.198.157 149.782 166.424 1.018.433 127.314 141.460 1.653.456 206.699 229.665
2027 1.255.208 156.914 174.348 1.066.927 133.376 148.196 1.732.187 216.541 240.601
2028 1.310.948 163.882 182.091 1.114.305 139.299 154.777 1.809.108 226.157 251.285
2029 1.365.440 170.694 189.660 1.160.624 145.090 161.211 1.884.307 235.557 261.730
2030 1.418.746 177.357 197.064 1.205.934 150.754 167.504 1.957.870 244.753 271.948
2031 1.470.924 183.880 204.311 1.250.285 156.298 173.665 2.029.875 253.755 281.950
2032 1.522.028 190.269 211.410 1.293.724 161.728 179.698 2.100.399 262.571 291.745
2033 1.572.111 196.530 218.366 1.336.295 167.050 185.611 2.169.514 271.211 301.345
2034 1.621.223 202.669 225.188 1.378.040 172.269 191.410 2.237.288 279.683 310.759
2035 1.669.411 208.693 231.881 1.419.000 177.389 197.099 2.303.788 287.996 319.996
2036 1.716.721 214.607 238.452 1.459.213 182.416 202.685 2.369.074 296.158 329.064
2037 1.763.194 220.417 244.908 1.498.715 187.354 208.171 2.433.208 304.175 337.973
2038 1.808.872 226.127 251.252 1.537.541 192.208 213.564 2.496.243 312.055 346.728
2039 1.853.793 231.743 257.492 1.575.724 196.981 218.868 2.558.235 319.805 355.339
2040 1.897.995 237.268 263.632 1.613.296 201.678 224.087 2.619.234 327.430 363.812
2041 1.941.513 242.709 269.676 1.650.286 206.302 229.225 2.679.288 334.938 372.153

Based on the results from Table 2 and using the potential energy generation under current conditions for the year 2042, with 248.067 kW/day of electricity, and considering the average subsistence consumption set at 173 kWh/month per household 48, it is established that the electricity generated could supply power to approximately 43.705 households per month in Villavicencio and surrounding municipalities.

Furthermore, the thermal energy generated, which amounts to 275.630 kWh/day, could be used for typical industrial processes in the region that require heat, such as pasteurization in the food industry, drying in agricultural processes, or steam generation for operations in manufacturing plants 49. This application would not only optimize the use of recovered methane but would also represent a source of renewable and sustainable energy that could reduce the dependence on fossil fuels and decrease the environmental impact of such industries. These results are consistent with those obtained by recent studies on the utilization of methane generated in landfills 12) (22) (26) (29) (50) .

Under Scenario 1 for the year 2042, an electrical energy generation of 210.857 kW/day is estimated, which could supply approximately 37.293 homes monthly. In the case of Scenario 2, with electricity generation of 342.333 kW/day, the number of homes that could benefit increases to approximately 60.194 homes per month, highlighting the significant impact of operational optimization on the energy capacity of the landfill. This scenario reflects an even greater potential to support the growing energy demand of the region and contribute to local energy stability and development.

Existing policies in Latin America for the energy use of biogas demonstrate its feasibility. In Brazil, the PROINFA program has successfully integrated biogas into the energy matrix 51, while in Mexico, the Renewable Energy Program of the Secretary of Energy has supported numerous biogas projects 52. In Colombia, several regulations and strategic plans stand out, such as Law 1715 of 2014 53, which regulates the integration of non-conventional renewable energies, including biogas and biomethane, into the National Energy System, and the National Energy Plan 2020-2050 54, which promotes the use of renewable energies and low-emission gases. Additionally, Resolution 240 of 2016 55 by the CREG establishes the regulatory framework for the use of biogas and biomethane in public gas services. Law 2128 of 2021 56, in its Article 7, encourages the replacement of firewood, coal, and waste with transitional energy sources, and Law 2099 of 2021 57, authorizes financing for generation and self-generation projects with Non-Conventional Renewable Energy Sources (FNCER). These policies and regulatory frameworks facilitate the integration of biogas into the energy matrix and offer economic and legal incentives that can be replicated in other regions.

Successful experiences in countries such as Argentina 58) and Brazil further demonstrate the potential of biogas utilization. In Argentina, the CEAMSE landfill has implemented a biogas capture and utilization system to generate electricity, supplying thousands of households and reducing greenhouse gas emissions. In Brazil, financial viability was achieved for the commercialization of excess electricity produced by landfills located in São Paulo, illustrating the use of biogas for electricity production.

Finally, the inclusion of thermal energy in the calculation of the overall energy potential underscores the versatility of methane utilization, allowing not only to cover the basic electricity needs of households but also to support local industries through a clean and renewable energy source 46) (26) (50) , evidencing a positive step towards the integral sustainability of the Villavicencio region.

Conclusions

The implementation of the LandGEM model confirms the direct relationship between the tons of waste accepted and the generation of methane, which increased from approximately 1.505.978 m³ in 2010 to almost 8.596.308 m³ in 2020, illustrating the exponential nature of methane growth, even after the landfill's closure, and the urgent need for long-term mitigation measures.

The potential for electric energy generation from methane emissions could reach 248.067 kW/day by the year 2042, which could supply the monthly electric consumption of about 43.705 households, marking a significant contribution toward regional energy self-sufficiency and environmental sustainability.

The thermal energy derived from methane, estimated at 275.630 kWh/day, could support local industrial processes, demonstrating the versatility of methane as an energy resource and its potential to replace fossil fuels in the industry, contributing to the reduction of the regional carbon footprint.

The hypothetical landfill management scenarios present a significant impact on the potential for methane utilization; for example, under the operational optimization scenario, the generation of electricity could be increased to 342.333 kW/day, underscoring the effectiveness of improved waste management policies and methane capture in driving towards a circular economy.

Acknowledgments

We express our special thanks to the University of Los Llanos for the financial and administrative support provided during the implementation of the project with code C03-F02-015-2022.

References

1. Sales Silva ST, Barros RM, Silva Dos Santos IF, Maria De Cassia Crispim A, Tiago Filho GL, Silva Lora EE. Technical and economic evaluation of using biomethane from sanitary landfills for supplying vehicles in the Southeastern region of Brazil. Renew Energy. 2022;196:1142-57. [ Links ]

2. Ni G. Mitigating greenhouse gas emissions from waste treatment through microbiological innovation. Microbiol Aust. 2023;44(1):22-6. [ Links ]

3. Yumnam G, Gyanendra Y, Singh CI. A systematic bibliometric review of the global research dynamics of United Nations Sustainable Development Goals 2030. Sustain Futur. 2024;7:100192. [ Links ]

4. Li Y, Zhang S, Liu C. Research on Greenhouse Gas Emission Characteristics and Emission Mitigation Potential of Municipal Solid Waste Treatment in Beijing. Sustainability. 2022;14(14):8398. [ Links ]

5. Patel B, Patel A, Patel P. Waste to energy: a decision-making process for technology selection through characterization of waste, considering energy and emission in the city of Ahmedabad, India. J Mater Cycles Waste Manag. 2023;25(2):1227-38. [ Links ]

6. Pheakdey DV, Noudeng V, Xuan TD. Landfill Biogas Recovery and Its Contribution to Greenhouse Gas Mitigation. Energies. 2023;16(12):4689. [ Links ]

7. Temireyeva A, Zhunussova K, Aidabulov M, Venetis C, Sarbassov Y, Shah D. Greenhouse Gas Emissions-Based Development and Characterization of Optimal Scenarios for Municipal Solid and Sewage Sludge Waste Management in Astana City. Sustainability. 2022;14(23):15850. [ Links ]

8. Abu-Qdais HA, Al-Ghazawi Z, Awawdeh A. Assessment of Greenhouse Gas Emissions and Energetic Potential from Solid Waste Landfills in Jordan: A Comparative Modelling Analysis. Water. 2022;15(1):155. [ Links ]

9. Kumar C, Mishra P, Singh N, Pathak AK. Landfill Emissions and Their Impact on the Environment. Int J Eng Res. 2020;9(08):617-622. [ Links ]

10. Clint Burklin AA, Singleton A. Landfill Gas Emissions Model (LandGEM) Version 3.02 User's Guide. Washington, DC: U.S. Environmental Protection Agency; 2005. 55 p. [ Links ]

11. U.S. Environmental Protection Agency. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills. Washington, DC: U.S. Environmental Protection Agency; 2008. 249 p. [ Links ]

12. Chandra S, Ganguly R. Assessment of landfill gases by Land GEM and energy recovery potential from municipal solid waste of Kanpur city, India. Heliyon. 2023;9(4):e15187. [ Links ]

13. Fallahizadeh S, Rahmatinia M, Mohammadi Z, Vaezzadeh M, Tajamiri A, Soleimani H. Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran. MethodsX. 2019;6:391-8. [ Links ]

14. Wangyao K. Methane Generation Rate Constant in Tropical Landfill. 2010; [ Links ]

15. Pillai J, Riverol C. Estimation of gas emission and derived electrical power generation from landfills. Trinidad and Tobago as study case. Sustain Energy Technol Assess. 2018;29:139-46. [ Links ]

16. Andrade Morales ÁA, Restrepo Victoria ÁH, Tibaquirá JE. Estimación de biogás de relleno sanitario, caso de estudio: Colombia. Entre Cienc E Ing. 2018;12(23):40-7. [ Links ]

17. Rodrigues Silveira AR, Nadaleti WC, Przybyla G, Belli Filho P. Potential use of methane and syngas from residues generated in rice industries of Pelotas, Rio Grande do Sul: Thermal and electrical energy. Renew Energy. 2019;134:1003-16. [ Links ]

18. U.S. Environmental Protection Agency. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills. 2008 [cited 2024 Jul 22]. Available from: https://nepis.epa.gov/Exe/tiff2png.cgi/P1002UVK.PNG?-r+75+-g+7+D%3A%5CZYFILES%5CINDEX%20DATA%5C06THRU10%5CTIFF%5C00000319%5CP1002UVK.TIFLinks ]

19. Scarlat N, Motola V, Dallemand JF, Monforti-Ferrario F, Mofor L. Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renew Sustain Energy Rev. 2015;50:1269-86. [ Links ]

20. Ramprasad C, Teja HC, Gowtham V, Vikas V. Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model. MethodsX. 2022;9:101869. [ Links ]

21. Ahmed MM, Hossan MN, Masud MH. Prospect of waste-to-energy technologies in selected regions of lower and lower-middle-income countries of the world. J Clean Prod. 2024;450:142006. [ Links ]

22. Choudhary A, Kumar A, Kumar S, Verma V. Energy possibilities and future strategies for municipal solid waste in Himachal Pradesh. Mater Today Proc. 2022;48:1455-9. [ Links ]

23. Sun W, Wang X, DeCarolis JF, Barlaz MA. Evaluation of optimal model parameters for prediction of methane generation from selected U.S. landfills. Waste Manag. 2019;91:120-7. [ Links ]

24. Anshassi M, Smallwood T, Townsend TG. Life cycle GHG emissions of MSW landfilling versus Incineration: Expected outcomes based on US landfill gas collection regulations. Waste Manag. 2022;142:44-54. [ Links ]

25. Ramprasad C, Teja HC, Gowtham V, Vikas V. Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model. MethodsX. 2022;9:101869. [ Links ]

26. Rafew SM, Rafizul IM. Application of system dynamics for municipal solid waste to electric energy generation potential of Khulna city in Bangladesh. Energy Rep. 2023;9:4085-110. [ Links ]

27. Wang D, Yuan W, Xie Y, Fei X, Ren F, Wei Y, et al. Simulating CH4 emissions from MSW landfills in China from 2003 to 2042 using IPCC and LandGEM models. Heliyon. 2023;9(12):e22943. [ Links ]

28. Padilha JL, Amarante Mesquita AL. Waste-to-energy effect in municipal solid waste treatment for small cities in Brazil. Energy Convers Manag. 2022;265:115743. [ Links ]

29. Paddy EY, Namondo BV, Fopah-Lele A, Foba-Tendo J, Ibrahim FS, Tanyi E. Assessment of the energy potential of municipal solid waste: A case study of Mussaka dumpsite, Buea Cameroon. Bioresour Technol Rep. 2024;25:101784. [ Links ]

30. Bouyakhsass R, Souabi S, Bouaouda S, Taleb A, Kurniawan TA, Liang X, et al. Adding value to unused landfill gas for renewable energy on-site at Oum Azza landfill (Morocco): Environmental feasibility and cost-effectiveness. Trends Food Sci Technol. 2023;142:104168. [ Links ]

31. Wang D, Yuan W, Xie Y, Fei X, Ren F, Wei Y, et al. Simulating CH4 emissions from MSW landfills in China from 2003 to 2042 using IPCC and LandGEM models. Heliyon. 2023;9(12):e22943. [ Links ]

32. Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Definición del nivel de complejidad y evaluación de la población, la dotación y la demanda de agua. Bogotá D.C.: PANAMERICANA FORMAS EIMPRESOS S.A.; 2003. 67 p. [ Links ]

33. Superintendencia Delegada de Acueducto, Alcantarillado y Aseo. Informe Ejecutivo de Gestión Bioagricola del Llano S.A Empresa de Servicios Públicos Análisis 2012. 2013. [ Links ]

34. Superintendencia de Servicios Públicos Domiciliarios. Informe Nacional de Disposición Final de Residuos Sólidos 2020. Superintendencia de Servicios Públicos Domiciliarios; 2021. [ Links ]

35. Rodrigues Silveira AR, Nadaleti WC, Przybyla G, Belli Filho P. Potential use of methane and syngas from residues generated in rice industries of Pelotas, Rio Grande do Sul: Thermal and electrical energy. Renew Energy. 2019;134:1003-16. [ Links ]

36. U.S. Environmental Protection Agency. Catalog of CHP technologies. 2017. [cited 2024 Apr 27]. Available from: https://wa-reportsui.azurewebsites.net//home/report/ab6c367c-ee68-4b92-ac16-eeca6fc173a9Links ]

37. Instituto de Hidrología, Meteorología y Estudios Ambientales. Consulta y Descarga de Datos Hidrometeorológicos. [cited 2024 Apr 25]. Available from: http://dhime.ideam.gov.co/atencionciudadano/Links ]

38. Niño Torres ÁM, Trujillo González JM, Niño Torres AP, Corporación Universitaria Minuto de Dios, Instituto de Ciencias Ambientales de la Orinoquia Colombiana (ICAOC), Universidad de los Llanos. Gestión de residuos sólidos domiciliarios en la ciudad de Villavicencio. Una mirada desde los grupos de interés: empresa, estado y comunidad. Luna Azul. 2017;(44):177-87. [ Links ]

39. DANE - Censo general 2005. [cited 2024 Apr 25]. Available from: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-general-2005-1Links ]

40. DANE - Censo Nacional de Población y Vivienda 2018. [cited 2024 Apr 25]. Available from: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018Links ]

41. Ministerio de Vivienda, Ciudad y Territorio. Resolución CRA 833 de 2018. 2018. [ Links ]

42. Rafey A, Siddiqui FZ. Modelling and simulation of landfill methane model. Clean Energy Syst. 2023;5:100076. [ Links ]

43. Skytt T, Nielsen SN, Jonsson BG. Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability - A case study of Jämtland, Sweden. Ecol Indic. 2020;110:105831. [ Links ]

44. Da Silva NF, Schoeler GP, Lourenço VA, De Souza PL, Caballero CB, Salamoni RH, et al. First order models to estimate methane generation in landfill: A case study in south Brazil. J Environ Chem Eng. 2020;8(4):104053. [ Links ]

45. Ghosh P, Shah G, Chandra R, Sahota S, Kumar H, Vijay VK, et al. Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Bioresour Technol. 2019;272:611-5. [ Links ]

46. Karanjekar RV, Bhatt A, Altouqui S, Jangikhatoonabad N, Durai V, Sattler ML, et al. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model. Waste Manag. 2015;46:389-98. [ Links ]

47. Alcaldía de Villavicencio. Decreto No. 1000-24/ 203 de 2020. Alcaldía de Villavicencio; 17 de abril 2020. [ Links ]

48. Alcaldía de Villavicencio. Alcaldía de Villavicencio. [cited 2024 Apr 27]. Economía. Available from: http://historico.villavicencio.gov.co/MiMunicipio/Paginas/Economia.aspxLinks ]

49. Kale C, Gökçek M. A techno-economic assessment of landfill gas emissions and energy recovery potential of different landfill areas in Turkey. J Clean Prod. 2020;275:122946. [ Links ]

50. Torres Júnior P, Moreira CAL. O programa de incentivo às energias renováveis no Brasil (PROINFA) e a sua relação com a sustentabilidade: um estudo sobre a política energética brasileira sob a ótica neoliberal neoextrativista. Braz J Dev. 2020;6(3):15466-78. [ Links ]

51. Parsons B, Cochran J, Watson A, Katz J, Bracho R. Renewable Electricity Grid Integration Roadmap for Mexico. Supplement to the IEA Expert Group Report on Recommended Practices for Wind Integration Studies. 2015 [cited 2024 Jul 22] p. NREL/TP--7A40-63136, 1215045. Report No.: NREL/TP--7A40-63136, 1215045. Available from: http://www.osti.gov/servlets/purl/1215045/Links ]

52. Ley 1715 de 2014. Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional. D.O 49150. 2014 [ Links ]

53. Unidad de Planeación Minero-Energética. Plan Energético Nacional 2020-2050. La transformación energética que habilita el desarrollo sostenible. [ Links ]

54. Resolución 240 de 2016 [Comisión de Regulación de Energía y Gas]. Por la cual se adoptan las normas aplicables al servicio público domiciliario de gas combustible con biogás y biometano. 6 de diciembre de 2016. Available from: https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0240_2016.htmLinks ]

55. Ley 2128 de 2021. Por medio de la cual se promueve el abastecimiento, continuidad, confiabilidad y cobertura del gas combustible en el país. D.O. 51.756. 2021. [ Links ]

56. Ley 2099 de 2021. Por medio de la cual se dictan disposiciones para la transición energética, la dinamización del mercado energético, la reactivación económica del país y se dictan otras disposiciones. D.O. No. 51.731. 2021. [ Links ]

57. Barnes Q. El boom de la basura argentina: dos casos exitosos de Transferencia de Tecnología en el mecanismo de desarrollo limpio. Encruc Am. 2015;7(1):25. [ Links ]

58. De Souza Ribeiro N, Barros RM, Dos Santos IFS, Filho GLT, Da Silva SPG. Electric energy generation from biogas derived from municipal solid waste using two systems: landfills and anaerobic digesters in the states of São Paulo and Minas Gerais, Brazil. Sustain Energy Technol Assess. 2021;48:101552. [ Links ]

Notes:

How to cite? Ramírez-Ríos, L.F., Becerra-Moreno, D., Ortega-Contreras, J.Y. Potential use of methane gas from the Villavicencio sanitary landfill, Colombia. Ingeniería y Competitividad, 2024, 26(2)e-21314019 https://doi.org/10.25100/iyc.v26i2.14019

Annex 1

Table 3 Methane Generation after the Closure of the Villavicencio Municipal Landfill 

Year Methane generated (Mg/year) Methane generated (m3/year)
2042 13,806 20,694,244
2044 12,492 18,724,927
2046 11,304 16,943,014
2048 10,228 15,330,673
2050 9,255 13,871,767
2052 8,374 12,551,694
2054 7,577 11,357,242
2056 6,856 10,276,458
2058 6,203 9,298,523
2060 5,613 8,413,652
2062 5,079 7,612,987
2064 4,596 6,888,516
2066 4,158 6,232,987
2068 3,763 5,639,840
2070 3,405 5,103,138
2072 3,081 4,617,510
2074 2,787 4,178,096
2076 2,522 3,780,497
2078 2,282 3,420,736
2080 2,065 3,095,210
2082 1,868 2,800,661
2084 1,691 2,534,143
2086 1,530 2,292,988
2088 1,384 2,074,781
2090 1,252 1,877,339
2092 1,133 1,698,687
2094 1,025 1,537,036
2096 928 1,390,767
2098 840 1,258,418
2100 760 1,138,664
2102 687 1,030,306
2104 622 932,259
2106 563 843,543
2108 509 763,269
2110 461 690,635
2112 417 624,912
2114 377 565,444
2116 341 511,635
2118 309 462,946
2120 279 418,891
2122 253 379,028
2124 229 342,959
2126 207 310,322
2128 187 280,791
2130 170 254,070
2132 153 229,892
2134 139 208,015
2136 126 188,220
2138 114 170,308
2140 103 154,101
2142 93 139,437
2144 84 126,168
2146 76 114,161
2148 69 103,297
TOTAL 531,295 796,367,807
AVERAGE 3,768 5,647,999

Source: Adapted from LanGEM

Annex 2

Table 4 Energy Generation Potential After the Closure of the Villavicencio Municipal Landfill 

Year CURRENT CONDITIONS SCENARIO 1 SCENARIO 2
Energy [CH4-CE] (MJ/día) Energy [CH4-EE] (kW/day) Energy [CH4-TE] (kWh/day) Energy [CH4-CE] (MJ/día) Energy [CH4-EE] (kW/day) Energy [CH4-TE] (kWh/day) Energy [CH4-CE] (MJ/día) Energy [CH4-EE] (kW/day) Energy [CH4-TE] (kWh/day)
2042 1.984.380 248.067 275.630 1.686.723 210.857 234.286 2.738.444 342.333 380.370
2044 1.795.541 224.461 249.401 1.526.210 190.791 211.991 2.477.846 309.756 344.173
2046 1.624.673 203.100 225.667 1.380.972 172.635 191.817 2.242.048 280.278 311.420
2048 1.470.065 183.773 204.192 1.249.555 156.207 173.563 2.028.689 253.606 281.785
2050 1.330.169 166.284 184.761 1.130.644 141.342 157.046 1.835.634 229.473 254.970
2052 1.203.587 150.460 167.178 1.023.049 127.891 142.102 1.660.950 207.635 230.706
2054 1.089.051 136.142 151.269 925.693 115.721 128.579 1.502.890 187.876 208.751
2056 985.414 123.187 136.874 837.602 104.709 116.343 1.359.871 169.997 188.886
2058 891.639 111.464 123.849 757.893 94.744 105.271 1.230.462 153.820 170.911
2060 806.789 100.857 112.063 685.770 85.728 95.253 1.113.368 139.182 154.647
2062 730.012 91.259 101.399 620.511 77.570 86.189 1.007.417 125.937 139.930
2064 660.543 82.574 91.749 561.461 70.188 77.987 911.549 113.953 126.614
2066 597.684 74.716 83.018 508.031 63.509 70.566 824.803 103.109 114.565
2068 540.807 67.606 75.118 459.686 57.465 63.850 746.313 93.297 103.663
2070 489.342 61.173 67.970 415.941 51.997 57.774 675.292 84.418 93.798
2072 442.775 55.351 61.501 376.359 47.049 52.276 611.029 76.385 84.872
2074 400.639 50.084 55.649 340.543 42.571 47.301 552.882 69.116 76.795
2076 362.513 45.318 50.353 308.136 38.520 42.800 500.269 62.539 69.487
2078 328.016 41.005 45.561 278.813 34.854 38.727 452.662 56.587 62.875
2080 296.801 37.103 41.226 252.281 31.538 35.042 409.585 51.202 56.891
2082 268.557 33.572 37.303 228.273 28.536 31.707 370.608 46.330 51.477
2084 243.000 30.377 33.753 206.550 25.821 28.690 335.340 41.921 46.579
2086 219.876 27.487 30.541 186.894 23.364 25.960 303.428 37.932 42.146
2088 198.952 24.871 27.634 169.109 21.140 23.489 274.553 34.322 38.135
2090 180.019 22.504 25.005 153.016 19.129 21.254 248.426 31.056 34.506
2092 162.888 20.363 22.625 138.455 17.308 19.231 224.785 28.100 31.223
2094 147.387 18.425 20.472 125.279 15.661 17.401 203.394 25.426 28.251
2096 133.361 16.671 18.524 113.357 14.171 15.745 184.039 23.007 25.563
2098 120.670 15.085 16.761 102.570 12.822 14.247 166.525 20.817 23.130
2100 109.187 13.649 15.166 92.809 11.602 12.891 150.678 18.836 20.929
2102 98.796 12.351 13.723 83.977 10.498 11.664 136.339 17.044 18.937
2104 89.395 11.175 12.417 75.986 9.499 10.554 123.365 15.422 17.135
2106 80.888 10.112 11.235 68.755 8.595 9.550 111.625 13.954 15.505
2108 73.190 9.150 10.166 62.212 7.777 8.641 101.002 12.626 14.029
2110 66.225 8.279 9.199 56.291 7.037 7.819 91.391 11.425 12.694
2112 59.923 7.491 8.323 50.935 6.367 7.075 82.694 10.338 11.486
2114 54.221 6.778 7.531 46.088 5.761 6.402 74.824 9.354 10.393
2116 49.061 6.133 6.815 41.702 5.213 5.792 67.704 8.464 9.404
2118 44.392 5.549 6.166 37.733 4.717 5.241 61.261 7.658 8.509
2120 40.168 5.021 5.579 34.142 4.268 4.742 55.431 6.929 7.699
2122 36.345 4.544 5.048 30.893 3.862 4.291 50.156 6.270 6.967
2124 32.886 4.111 4.568 27.954 3.494 3.883 45.383 5.673 6.304
2126 29.757 3.720 4.133 25.293 3.162 3.513 41.065 5.133 5.704
2128 26.925 3.366 3.740 22.886 2.861 3.179 37.157 4.645 5.161
2130 24.363 3.046 3.384 20.708 2.589 2.876 33.621 4.203 4.670
2132 22.044 2.756 3.062 18.738 2.342 2.603 30.421 3.803 4.226
2134 19.947 2.494 2.771 16.955 2.120 2.355 27.526 3.441 3.823
2136 18.048 2.256 2.507 15.341 1.918 2.131 24.907 3.114 3.460
2138 16.331 2.042 2.268 13.881 1.735 1.928 22.537 2.817 3.130
2140 14.777 1.847 2.053 12.560 1.570 1.745 20.392 2.549 2.832
2142 13.371 1.671 1.857 11.365 1.421 1.579 18.451 2.307 2.563
2144 12.098 1.512 1.680 10.284 1.286 1.428 16.696 2.087 2.319
2146 10.947 1.368 1.521 9.305 1.163 1.292 15.107 1.889 2.098
2148 9.905 1.238 1.376 8.419 1.053 1.169 13.669 1.709 1.899
TOTAL 76.364.036 9.546.268 10.606.965 64.909.431 8.114.328 9.015.920 105.382.370 13.173.850 14.637.611
AVERAGE 541.589 67.704 75.227 460.351 57.548 63.943 747.393 93.432 103.813

Source: Adapted from LanGEM

Received: April 30, 2024; Accepted: July 23, 2024

Conflict of interest:

none declared

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License