SciELO - Scientific Electronic Library Online

 
vol.18 issue2Breaking of dormancy in hawthorn yam (Dioscorea rotundata[Poir.]) by applying plant growth regulatorsDetermination of Aloysia citriodora (Palau) phenology and the associated arthropods author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Ciencias Hortícolas

Print version ISSN 2011-2173

rev.colomb.cienc.hortic. vol.18 no.2 Bogotá May/Aug. 2024  Epub July 31, 2024

https://doi.org/10.17584/rcch.2024v18i2.17623 

Section of ornamental plants

Micropropagation and phytopathology of calla lily (Zantedeschia spp.)

Micropropagación y fitopatología de la cala (Zantedeschia spp.)

AMPARO MARTÍNEZ-HERNÁNDEZ1 
http://orcid.org/0000-0003-0733-9720

JOSÉ LUIS RODRÍGUEZDELAO1 
http://orcid.org/0000-0002-2331-9984

JUAN GUILLERMO CRUZ-CASTILLO2  3 
http://orcid.org/0000-0002-8687-6235

JOSÉ OSCAR MASCORRO-GALLARDO1 
http://orcid.org/0000-0001-9713-4758

MA.DEJESÚS JUÁREZ-HERNÁNDEZ1 
http://orcid.org/0000-0002-5043-4240

LUIS ÁNGEL BARRERA-GUZMÁN2 
http://orcid.org/0000-0001-8057-2583

HÉCTOR TECUMSHÉ MÓJICA-ZÁRATE2 
http://orcid.org/0000-0002-9067-3983

1 Universidad Autónoma Chapingo, Departamento de Fitotecnia, Texcoco (Mexico).

2 Universidad Autónoma Chapingo, Centro Regional Universitario Oriente, Huatusco (Mexico).


ABSTRACT

Calla lily (Zantedeschia spp.) is an herbaceous flowering plant that belongs to the Araceae family, with worldwide distribution. Native to the swampy or mountainous regions of South Africa, it is valued as an ornamental plant due to its extraordinary spathe and decorative leaves. However, its production has decreased due to the presence of diseases. In vitro culture of plant cells and tissues has been successfully applied to precisely diagnose and control diseases to produce disease-free plants. This study analyzes information from in vitro techniques applied to this crop, highlighting phytopathological aspects. It considers the different stages of in vitro culture and the process of obtaining and propagating healthy or pathogen-free plants. In vitro culture has proven to be an effective tool for rapid clonal propagation and multiplication of Zantedeschia spp. Sanitary management before the in vitro culture is recommended.

Additional key words: tissue culture; embryogenesis; organogenesis; totipotency; Pectobacterium

RESUMEN

La cala lily (Zantedeschia spp.) es una planta herbácea con flores que pertenece a la familia Araceae, con distribución mundial. Originaria de las regiones pantanosas o montañosas de Sudáfrica, es valorada como planta ornamental por su extraordinaria espata y hojas decorativas. Sin embargo, su producción ha disminuido por la presencia de enfermedades. El cultivo in vitro de células y tejidos vegetales se ha aplicado con éxito para diagnósticar y controlar enfermedades con precisión y producir plantas libres de enfermedades. Este estudio analiza información de las técnicas in vitro aplicadas a este cultivo, destacando aspectos fitopatológicos. Considera las diferentes etapas del cultivo in vitro y el proceso de obtención y propagación de plantas sanas o libre de patógenos. El cultivo in vitro ha demostrado ser una herramienta eficaz para la rápida propagación clonal y multiplicación de Zantedeschia spp. Se recomienda manejo sanitario antes del cultivo in vitro.

Palabras clave adicionales: cultivo de tejidos; embriogénesis; organogénesis; totipotencia; Pectobacterium

INTRODUCTION

In Mexico, calla lily production is concentrated in the provinces of Veracruz, Puebla, Jalisco, Chiapas, Oaxaca, Colima, and the State of Mexico (Cruz-Castillo and Hernández-Montes, 2022). Its production is limited by Pectobacterium carotovorum, also known as Erwinia carotovora subsp. carotovora (Trejo-Téllez et al., 2013; Cruz-Castillo and Torres-Lima, 2017) and other unknown pathogens (Delgado-Paredes et al., 2021). Calla lilies are popular in Mexico and are used to decorate weddings and other celebrations (Cuellar-Mandujano et al., 2022). Most calla lilies produced in Mexico are perennial with white spathes. In Latin America, this calla lily grows in Argentina, Bolivia, Brazil, Colombia (Casierra-Posada et al., 2014), Ecuador, and Guatemala (Cruz-Castillo, 2022).

The calla lily (Zantedeschia aethiopica[L.] Spreng.) is the most well-known species (Fig. 1), but there are other species with flowers with various colors from pink to brown. The genus Zantedeschia is divided into two sections or botanical groups: the Zantedeschia section and the Aestivae section (He et al., 2020). The Zantedeschia section comprises the species Z. aethiopica ([L.] Spreng.) and Z. odorata Perry, while the Aestivae section includes Z. albomaculata ([Hook.] Baill.), Z. rehmannii (Engl.), Z. elliottiana ([Watson] Engl.), Z. jucunda (Letty), Z. valida (Singh.), and Z. pentlandii ([Watson] Wittm.) (Wei et al., 2017). It has been demonstrated that the Aestivae section is more susceptible to soft rot caused by bacteria of the genus Pectobacterium due in part to the ecological adaptation of each section (Guttman et al., 2021). This susceptibility has reduced the production of calla lilies, leading to the introduction of in vitro cultivation techniques to obtain pathogen-free plants (Nery et al., 2018).

Figure 1. Calla lily (Zantedeschia aethiopica L. Spreng.) var. Utopia. A, leaf; B, petiole; C, roots; D, rhizome; E, apical bud; F, adventitious bud; G, immature spathe. 

A review regarding tissue culture of Zantedeschia was published (Sun et al., 2023), but rot causal agents of explants were not considered. The micropropagation of Z. aethiopica has often been difficult due to contamination of cultured rhizome tissue (Martínez-Hernández, 2022). Therefore, this review focuses on in vitro techniques in Zantedeschia, highlighting phytopathological aspects to reduce the contamination of the explants.

Phytopathology of the Zantedeschia genus

The main factor limiting the production of calla lilies is disease. Soft rot, caused by Pectobacterium carotovorum subsp. carotovorum poses a significant worldwide threat to Zantedeschia crop (Githeng’u et al., 2016). Other associated pathogens include Pseudomonas marginalis (Brown) Stevens (Krejzar et al., 2008; Yan et al., 2014), Pseudomonas veronii Elomari et al., Chryseobacterium indologenes (Yabuuchi et al.) Vandamme et al. (Mikiciński et al., 2010), Cellvibrio zantedeschiae sp. Nov. (Sheu et al., 2017), Pectobacterium zantedeschiaeWaleron et al. (Waleron et al., 2019), and Pectobacterium aroidearum Nabhan et al. (Chen et al., 2020). The main symptoms of this disease include dwarfing, chlorosis along the leaf margin progressing in a "V" shape that may turn brown, stem bending, and eventual desiccation (Ciampi et al., 2009).

Viruses that often attack Zantedeschia include dasheen mosaic virus (DsMV), classified as the most prevalent among Aroids (Cafrune et al., 2011). Its distribution was recorded in Bosnia and Herzegovina, where crops presented symptoms such as yellowing and distortion of leaves as well as mosaic and chlorotic ring symptoms (Grausgruber-Gröger et al., 2016).

For the konjac mosaic virus (KoMV), Myzus persicae (Sulzer) and Aphis gossypii (Glover) were identified as main vectors, along with vegetative propagation and seed transmission. Symptoms appear as mosaics, green islands, interveinal chlorosis, leaf deformity, short peduncles, and discolored pigmented spots on the spathe (Liao et al., 2020).

The calla lily latent virus (or zantedeschia mild mosaic virus [ZaMMV]) is a potyvirus isolated from the Black Magic cultivar. It manifests as yellow spots and stripes, green islands, and an unusually mild mosaic (Rizzo et al., 2015). For the detection of viruses, Zantedeschia has been cultured in vitro (Purmale et al., 2023). However, with this type of propagation the viruses were not eliminated. Therefore, studies on thermotherapy, chemotherapy, cryotherapy or electrotherapy (Szabó et al., 2024) to eliminate virus in Zantedeschia could be evaluated.

Pathological control and eradication methods

Endogenous contamination is a recurring issue in in vitro establishment, particularly in rhizome tissue. Sanitary management before in vitro cultivation is recommended. Species of the Pectobacterium family propagate easily through decaying plant material, and there are no efficient control agents for the disease they cause (van der Wolf et al., 2021; Niyokuri and Nyalala, 2023). Soil fumigation with metam sodium and the application of antagonistic bacteria CAE 01 of the Enterobacteriaceae family reduced the percentageof infection in rhizomes (García-López, 2010). As a biological control for P. carotovorum subsp. carotovorum, the high specificity of the bacteriophage virus PP1 of the Podoviridae family was studied (Lim et al., 2013). The use of Bacillus velezensis (Ruiz-García et al.) (other scientific name Bacillus amyloliquefaciens subsp. plantarum) reduced the growth of the phytopathogen in both in vitro and field conditions (He et al., 2021). Protein profiles from in vitro and in vivo conditions for P. carotovorum following interaction with Z. elliottiana 'Black Magic' were also generated. Using two-dimensional electrophoresis, 53 essential proteins for their virulence were identified, showing differential expression in vitro, in vivo, or both compared to the control (Wang et al., 2018).

Methods of incorporation to in vitro conditions

The eradication of pathogens prior to calla lily in vitro establishment has been a challenge. The use of mercury chloride (HgCl2) at 0.1-0.2% (w/v) for 15 min (Xiao-Chun, 2010) or for 30 min for leaf and rhizome at doses of 0.1 and 0.2% (w/v) respectively with prior treatment with benomyl at 1% (w/v) in shaking for 30 min (Hlophe et al., 2015) yielded good results. Even doses of 0.5% of HgCl2 (w/v) for 15 min were effective at this stage in Z. rehmannii with pre-treatment of immersion in 70% ethanol (v/v) for 30 s (Kulpa, 2016). Despite the effectiveness of these treatments, a concentration of 0.25 mg L-1 has negative environmental consequences on amphibian development (Muñoz-Escobar and Palacio-Baena, 2010).

Hernández-Villaseñor et al. (2018) disinfected with a 15% (w/w) chlorine solution followed by 500 mg L-1 of streptomycin, 500 mg L-1 of oxytetracycline, and 500 mg L-1 of carboxamide for 60 min. Finally, the explants were placed into a 70% (v/v) ethanol solution for 30 s. Similarly, the application of chlorine dioxide (ClO2) at a concentration of 60 to 180 mg L-1 (v/v) for 5 min followed by hydrogen peroxide (H2O2) at 5% (v/v) for 15 min provided a survival rate >75% for Z. aethiopica (Chen et al., 2017).

Due to the need to implement disinfestation protocols that have less environmental impact, studies based on antibacterial activity of Coptis chinensis (Franch.) extract has been developed against soft rot. 100% C. chinensis made an inhibition effect comparable to streptomycin sulphate (Githeng’u et al., 2016), an antibiotic widely used in the 90’s. This protocol has not been tested on Zantedeschia explants. Hashemidehkordi et al. (2021) evaluated the effect of hot water in the disinfection of rhizome explants and achieved a survival rate of 90% at 45°C for 35 min followed by immersion in 70% ethanol for 30 s and 1% (v/v) sodium hypochlorite (NaOCl) for 10 min. This procedure represents a good alternative to reduce the use of previously mentioned products and their impact in terms of environmental, economic impact, and antibiotic resistance. Table 1 shows the control methods for the in vitro culture of calla lilies.

Table 1. Methods for controlling contaminants in Zantedeschia spp. cultured in vitro. 

Plant material Origin of explant Control method Survival rate (%) Reference
Z. hybrida Rhizome HgCl2 at 0.1-0.2% for 15 min for rhizome segments Not reported Xiao-Chun, 2010
Z. aethiopica Leaf and rhizome HgCl2 at 0.2% for rhizome segments and 0.1% for leaves for 30 min 28% in rhizome and 78.3% in leaf Hlophe et al., 2015
Z. rehmannii Rhizome Immersion in 0.5% HgCl2 for 15 min 73% Kulpa, 2016
Z. aethiopica Rhizome 15 % chlorine + 500 mg L-1 streptomycin, 500 mg L-1 oxytetracycline, and 500 mg L-1 captan for 60 min + 70 % ethanol (v/v) for 30 s Not reported Hernández-Villaseñor et al., 2018
Z. aethiopica Rhizome-buds ClO2 at 60 to 180 mg L-1 (v/v) for 5 min + 5% H2O2 (v/v) for 15 min >75 % Chen et al., 2017
Zantedeschia spp. ‘Orania’ and ‘Sunclub’ Rhizome-buds Hot water bath at 45°C for 35 min + immersion in 70 % ethanol for 30 s and 1 % sodium hypochlorite (v/v) for 10 min >90 % Hashemidehkordi et al., 2021
Z. aethiopica ‘Déjà vu’ and ‘Utopia’ Rhizome Agrimicyn® (2 g L-1) added to the fungicide Benomyl® (2 g L-1) ‘Utopía’: 60%; ‘Déjà vu’; 80 % Martínez-Hernández, 2022
Z. aethiopica Seed 70 % ethanol for 1 min + 10% NaOCl for 15 min, and 10 min of 30% H2O2 100 % Martínez-Hernández, 2022

In vitro propagation of Z aethiopica cultivars in Mexico has not been easy due to contamination of the explants. The antibiotic Agrimycin® (2 g L-1) added to the fungicide Benomyl® (2 g L-1) reduced endophytic contamination by fungi and bacteria in explants from rhizomes of the cultivars Deja Vú and Utopia. For seed germination, in vitro contamination was not observed when using 70% ethanol for 1 min followed by 10% sodium hypochlorite for 15 min, and 10 min of 30% hydrogen peroxide (Martínez-Hernández, 2022).

Direct organogenesis

The process of organogenesis provides the basis for asexual plant propagation largely from nonmeristematic somatic tissues (Schwarz and Beaty, 2000). Through this method, pathogen-free plants have been obtained via meristem culture (Tab. 2). In Z. aethiopica, the addition of benzylaminopurine (BAP) at 22.19 μM produced 2.6 shoots per explant (Ribeiro et al., 2014). Rhizomes and tubers have been the main organs targeted for obtaining explants despite the likelihood of presenting endogenous contamination. Singh et al. (2009) obtained 5 to 6 shoots of Z. aethiopica 10.0 mg L-1 of BAP supplemented with 50 mg L-1 of ascorbic acid. In Z. rehmannii, culture was obtained using a concentration of 3 mg L-1 BAP, and a rate of 4.3 shoots per explant was obtained with 2.5 mg L-1 BAP (Kulpa, 2016).

Table 2. Research relating to the direct organogenesis of Zantedeschia spp. 

Plant material Origin of the explant Medium Growth regulators Multiplication rate (shoots per explant) Reference
Z. aethiopica Rhizome MS 10.0 mg L-1 BAP, 50 mg L-1 ascorbic acid, 25 mg L-1 adenine sulfate, L-arginine and citric acid 5-6 Singh et al., 2009
Z. rehmannii Rhizome-buds MS 3 mg L-1 and 2.5 mg L-1 BAP + 100 mg L-1 ascorbic acid 4.3 Kulpa, 2016
Z. aethiopica Shoot tip MS 22.19 μM BAP 2.6 Ribeiro et al., 2014

Indirect organogenesis

Shin et al. (2020) reconstructed the process of regeneration of new shoots from callus and differentiated four stages: acquisition of pluripotency (in a medium rich in auxins), formation of pro-meristems, establishment of shoot progenitor, and shoot growth. Some species from the genus Zantedeschia have been propagated through this pathway (Tab. 3).

Table 3. Research related to indirect organogenesis of Zantedeschia spp. 

Plant material Origin of the explant Medium Growth regulators Reference
Z. hybrida ‘Feng Yang’ Rhizome MS BA (2.0 mg L-1) + NAA (0.1 ~ 0.2 mg L-1) Xiao-Chun, 2010
Zantedeschia spp. ‘Sunlight’, ‘Chiante’ and ‘Pink ‘Persuasion’ Apices derived from callus shoots and adventitious shoots MS + 70-90 g L-1 sucrose BA (2-3 mg L-1) Lee and Ko, 2005
Zantedeschia sp. ‘Pink Giant’ Leaf MS 2,4-D (2.0 mg L-1) and BA (2.0 mg L-1) or NAA (2.0 mg L-1) and BA (2.0 mg L-1) Gong et al., 2008

MS, Murashige and Skoog.

In vitro dedifferentiation in Z. aethiopica and Z. elliottiana was observed in petiole, leaf, and spathe segments, achieving over 80% callus formation on Murashige and Skoog (MS) medium supplemented with indoleacetic acid (IAA) at 0.5 mg L-1 + BAP 2.0 mg L-1 for leaves; IAA (2.0 mg L-1) + BAP (2.0 mg L-1) for spathes; and IAA (1.0 mg L-1) + BAP (2.0 mg L-1) for petioles. The petioles showed the greatest dedifferentiation capacity among the organs mentioned. Furthermore, Z. elliottiana demonstrated a higher differentiation capacity than Z. aethiopica, as well as the ability to generate callus at high doses of BAP (4.0 mg L-1) combined with NAA (0.1 mg L-1) (Jonytienè et al., 2017). In Zantedeschia spp., callus formation was induced by culturing leaf segments on MS medium supplemented with 2,4-D (2.0 mg L-1) and BA (2.0 mg L-1) or with naphthaleneacetic acid (NAA) (2.0 mg L-1) and BA (2.0 mg L-1) (Gong et al., 2008).

The hormonal balance between auxins and cytokinin is crucial in the indirect organogenesis of Zantedeschia in vitro (Cheng et al., 2013). Lee and Ko (2005) achieved up to 56.7% callus formation on a medium containing BA (2.0 mg L-1) and a shoot regeneration rate of 70% at 3.0 mg L-1 of BA. Cytokinin induced the formation of multiple shoots; 2ip (1.0 mg L-1), BA (5.0 mg L-1), and BA (1.0 mg L-1) brought on 16, 14, and 12 multiple shoots in the cultivars Sunlight, Chiante, and Pink Persuasion, respectively. Xiao-Chun (2010) promoted callus formation on an MS medium + 2.0 mg L-1 BA + 0.1-0.2 mg L-1 NAA and achieved 100% rooting with an MS medium + indole butyric acid (IBA) at a concentration of 0.3 mg L-1.

Somatic embryogenesis

Few studies on induced somatic embryogenesis in Zantedeschia exist (Tab. 4). The first reported research on somatic embryogenesis in calla lilies was conducted on three hybrids with explants derived from rhizomes and anthers. However, the formation of somatic embryos was only achieved from rhizome segments. The best results were obtained in media supplemented with plant growth regulators (Nic-Can et al., 2016), as NAA (2.0 mg L-1) and BA (0.6 to 2.0 mg L-1). Conversion to normal seedlings was achieved in MS medium supplemented with vitamins, micro and macronutrients, 1.0 mg L-1 2iP, 3% sucrose, and 0.7% agar (Duquenne et al., 2006).

Stem segments containing apical meristems derived from the cultivar Gag-si were cultured on MS medium. A 25% induction rate of yellow embryogenic calli was obtained with MS + 0.5 mg L-1 NAA and 1.5 mg L-1 BA. In the regeneration experiments from embryogenic calli, the MS medium supplemented with 0.5 mg L-1 IAA and 2.0 mg L-1 BA showed the highest rates, approximately 85 ~ 90%. Table 4 summarizes research related to somatic embryogenesis of Zantedeschia species (Han and Kim, 2019).

Table 4. Research related to somatic embryogenesis of Zantedeschia spp. 

Species Origin of explant Medium Growth regulators Reference
Zantedeschia hybrids Rhizomes and anthers MS BA (0.22 mM) Duquenne et al., 2006
Zantedeschia hybrida Petiole MS 0.5 mg L-1 NAA, 1.5 mg L-1 BA, 0.5 mg L-1 IAA, 2.0 mg L-1 BA Han and Kim, 2019

Plant mass propagation through bioreactor

Research with Zantedeschia grown in liquid media has focused on determining the optimal frequency of immersion, comparing temporary immersion systems (TIS) with other culture systems such as semisolid and agitated liquid, and the effect of growth regulators. A multiplication coefficient of 9.7 shoots per explant was obtained using active buds from Zantedeschia spp rhizomes in a modified MS medium with 100 mg L-1 myo-inositol, 1 g thiamine, 4 mg L-1 BAP, and paclobutrazol at 0.3 mg L-1 with an immersion frequency of 4 h every 4 min (Sánchez et al., 2009). Sánchez et al. (2010) achieved multiplication rates of 7.93, 10.66, and 11.30 shoots per explant in an MS medium + 1, 2, and 4 mg L-1 BA and an immersion frequency of 4 h every 3 min.

In vitro zygotic embryos germination

Mature embryos from in vitro seeds have also been used to generate transgenic plants of Zantedeschia (Sun et al., 2022). Studies on the in vitro germination of embryos (seeds) of species in the genus Zantedeschia determined that temperatures of 14-20°C, high concentrations of sucrose and agar (Ngamau, 2001), fruit maturity, and GA3 can influence the germination rate (Nery et al., 2015). In vitro germination of Zantedeschia studies focused on early flowering, and salt and/or temperature tolerance. Seedlings from seeds established at low temperatures had greater growth under lower night temperatures than those germinated at high temperatures, and clones from seeds exposed to high levels of sodium chloride (NaCl) achieved greater growth. Also, early seeds showed better growth, early flowering, and a higher number of spathes (Ngamau, 2008). The germination of Z. aethiopica seeds in vitro was enhanced in a medium supplemented with 3.0 mg L-1 of GA3 and 0.3 mg L-1 of BAP, with germination occurring 35 d after establishment (Martínez-Hernández, 2022) (Fig. 2).

Figure 2. Growth in vitro of white calla lily (Zantedeschia aethiopica L. Spreng) seed cultured. A, development of the radicle and emergence of the plumule; B and C, elongation of the root and plumule; D., first leaf. 

Martínez-Hernández et al. (2022) isolated zygotic embryos from mature and immature white calla lily fruits. The seeds were pretreated with sterile water and 30% (v/v) H2O2. The isolated embryos were cultured in a medium with MS salts (100%) supplemented with BAP (0, 0.3 and 3 mg L -1) and GA3 (0, 0.3 and 3.0 mg L-1). The embryos’ development was not affected by the composition of culture media, the seed pretreatments or the fruit ripening stage (Fig. 3).

Figure 3. White calla lily (Zantedeschia aethiopica L. Spreng.) seedling obtained from embryo isolation and in vitro culture. 

In vitro flowering

Naor et al. (2004a) investigated the hormonal control of floral induction and the development of inflorescence in vitro in day-neutral plants of Zantedeschia spp., as well as the effects of GA3 and BA on the development of inflorescences in regenerated tissue culture seedlings. The seedlings were immersed in GA3 and BA solutions before replanting in new media. GA3 was found to be essential for the transition from the vegetative to the reproductive stage. Inflorescence development in the apical bud was observed after 30-50 d in seedlings treated with GA3 grown in vitro. However, the resulting inflorescences had incomplete male and female flowers. BA did not affect flower induction but in the presence of GA3, BA at 4.4 M enhanced inflorescence differentiation. They concluded that the floral initiation was not influenced by environmental stimuli and that the inflorescence development in the apical bud resembled natural conditions (Naor et al., 2004a). GA3 had a dual action in the flowering process, inducing inflorescence differentiation and promoting floral stem elongation. They inferred that the flowering pattern might be a gradient in the distribution of GA, likely controlled by the apical dominance of the primary bud (Naor et al., 2004b).

Future studies

Genotype influences the growth and development of explants in vitro. Thus, the propagation of new varieties will need specific protocols. The evaluation of artificial light sources for illumination to improve the quality of the explants may be explored. The use of nanomaterials in modulating in vitro Zantedeschia tissue growth and development could also be evaluated. Additionally, organic additives in micropropagation to enhance the growth and health protection of the explants could be tested.

CONCLUSION

This review provided a historical overview of the applications of in vitro cultivation of Zantedeschia and the phytopathological issues that limit the propagation of this ornamental crop. The establishment of Zantedeschia in the field free from pathogens is ensured using healthy in vitro propagated explants. In vitro culture has proven to be an effective tool for rapid clonal propagation and multiplication of Zantedeschia spp. However, the propagation in vitro of Z. aethiopica has faced challenges in some cultivars due to the contamination of the explants.

BIBLIOGRAPHIC REFERENCES

Cafrune, E.E., F.Asinari, C.F.Nome, C.F.Perotto, M.C.Quiroga, and V.C.Conci. 2011. Identificación y caracterización del Dasheen mosaic virus en cala (Zantedeschia aethiopica) en Córdoba, Argentina. Fitopatol. Colomb.35(1), 63-67. [ Links ]

Casierra-Posada, F., M.M.Blanke, and J.C.Guerrero-Guío. 2014. Iron tolerance in calla lilies (Zantedeschia aethiopica). Gesunde Pflanzen66, 63-68. Doi: 10.1007/s10343-014-0316-y [ Links ]

Chen, L.-R., T.-C.Hsiung, K.-H.Lin, T.-B.Huang, M.-Y.Huang, and A.Wakana. 2017. Supplementary effect of hydrogen peroxide as a pre-disinfectant for sterilizing rhizome bud explants of Zantedeschia aethiopica L. with chlorine dioxide. J. Fac. Agric. Kyushu Univ.62(1), 81-86. Doi: 10.5109/1799306 [ Links ]

Chen, L.R., P.R.Lin, and C.J.Huang. 2020. First report of Pectobacterium aroidearum causing soft rot disease of white calla lily in Taiwan. Plant Dis.104(2), 563. Doi: 10.1094/PDIS-07-19-1462-PDN [ Links ]

Cheng, Z.J., L.Wang, W.Sun, Y.Zhang, C.Zhou, Y.H.Su, W.Li, T.T.Sun, XY.Zhao, X.G.Li, Y.Cheng, Y.Zhao, Q.Xie, and X.S.Zhang. 2013. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol.161(1), 240-251. Doi: 10.1104/pp.112.203166 [ Links ]

Ciampi, L., J.Nissen, E.Venegas, R.Fuentes, M.Costa, R.Schöbitz, E.Alvarez, and P.Alvarado. 2009. Identification of two species of Fusarium link that cause wilting of colored callas (Zantedeschia aethiopica (L.) Spreng.) cultivated under greenhouse conditions in Chile. Chilean J. Agr. Res.69(4), 516-525. Doi: 10.4067/S0718-58392009000400006 [ Links ]

Cruz-Castillo, J.G.. 2022. ‘Utopia’: a new Zantedeschia aethiopica. HortScience57(3), 443. Doi: 10.21273/HORTSCI16321-21 [ Links ]

Cruz-Castillo, J.G. and A.Hernández-Montes. 2022. ‘Sublime’, una nueva variedad de alcatraz (Zantedeschia aethiopica (L.) Spreng ). Agro-Divulgación2(4), 57-58. [ Links ]

Cruz-Castillo, J.G. and P.A.Torres-Lima. 2017. ‘Deja Vu’: a new calla lily (Zantedeschia aethiopica) cultivar. Rev. Chapingo Ser. Hortic.23(2), 97-101. Doi: 10.5154/r.rchsh.2017.01.005 [ Links ]

Cuellar-Mandujano, A.K., A.Hernández-Montes, and J.G.Cruz-Castillo. 2022. Atributos intangibles en alcatraz blanco (Zantedeschia aethiopica (L) K. Spreng): significados psicológicos y estructura de valores humanos para el consumidor. Nova Sci.14(29). Doi: 10.21640/ns.v14i29.3129 [ Links ]

Delgado-Paredes, G.E., C.Vásquez-Díaz, B.Esquerre-Ibañez, P.Bazán-Sernaqué, and C.Rojas-Idrogo. 2021. In vitro tissue culture in plants propagation and germplasm conservation of economically important species in Peru. Sci. Agropec.12(3), 337-349. Doi: 10.17268/sci.agropecu.2021.037 [ Links ]

Duquenne, B., T.Eeckhaut, S.Werbrouck, and J.Van Huylenbroeck. 2006. In vitro somatic embryogenesis and plant regeneration in Zantedeschia hybrids. Plant Cell Tiss. Organ Cult.87(3), 329-331. Doi: 10.1007/s11240-006-9161-8 [ Links ]

García-López, F.. 2010. Efecto de la cepa bacteriana CAE-01 y fumigación al suelo sobre la pudrición blanda en el cultivo de alcatraz en La Perla, Veracruz. Msc thesis. Universidad Autónoma Chapingo, Chapingo, Mexico. [ Links ]

Githeng'u, S.K., S.Nyalala, and L.Gaoqiong. 2016. Antibacterial activity of Coptis chinensis extract against Pectobacterium carotovorum subsp. carotovorum. Int. J. Phytopathol.5(2), 61-66. Doi: 10.33687/phytopath.005.02.1159 [ Links ]

Gong, X., F.Qu, C.You, W.Sun, and M.Wang. 2008. Establishment of callus induction system from leaves in Zantedeschia. J. Yantai Univ. (Nat. Sci. Engi. Ed.)3, 221-225. [ Links ]

Grausgruber-Gröger, S., S.Richter, J.M.Salapura, D.K.Jošić, V.Trkulja, and H.Reisenzein. 2016. First report of Dasheen mosaic virus in Zantedeschia in Bosnia and Herzegovina. New Dis. Rep.33(1), 13-13. Doi: 10.5197/j.2044-0588.2016.033.013 [ Links ]

Guttman, Y., J.R.Joshi, N.Chriker, N.Khadka, M.Kleiman, N.Reznik, Z.Wei, Z.Kerem, and I.Yedidia. 2021. Ecological adaptations influence the susceptibility of plants in the genus Zantedeschia to soft rot Pectobacterium spp.Hort. Res.8(1), 13. Doi: 10.1038/s41438-020-00446-2 [ Links ]

Han, I.-S. and J.B.Kim. 2019. Establishment of a regeneration system for the production of calla plants (Zantedeschia spp.) via embryogenic callus culture. J. Plant Biotechnol.46(1), 32-36. Doi: 10.5010/JPB.2019.46.1.032 [ Links ]

Hashemidehkordi, E., S.N.Mortazavi, and P.Azadi. 2021. An efficient in vitro propagation protocol of pot calla lily (Zantedeschia spp cv. Orania and Sunclub) via tuber production. Int. J. Hort. Sci. Technol.8(4), 343-351 [ Links ]

He, P., W.Cui, P.He, S.Munir, X.Li, Y.Wu, Y.Li, S.Asad, P.He, and Y.He. 2021. Bacillus amyloliquefaciens subsp. plantarum KC-1 inhibits Zantedeschia hybrida soft rot and promote plant growth. Biol. Control154, 104500. Doi: 10.1016/j.biocontrol.2020.104500 [ Links ]

He, S., Y.Yang, Z.Li, X.Wang, Y.Guo, and H.Wu. 2020. Comparative analysis of four Zantedeschia chloroplast genomes: expansion and contraction of the IR region, phylogenetic analyses and SSR genetic diversity assessment. PeerJ, 8, e9132. Doi: 10.7717/peerj.9132 [ Links ]

Hernández-Villaseñor, L.A., M.Z.Reyna-Villela, S.M.Aceves-Villarruel, J.Salazar-Flores, E.D.Torres-Sánchez, J.H.Torres-Jasso, and D.Rojas-Bravo. 2018. Effect of carbamazepine on the in vitro propagation of Zantedeschia aethiopica. Int. J. Environ. Sci. Toxicol. Res.6(2), 12-17 [ Links ]

Hlophe, N.P., M.Moyo, J.Van Staden, and J.F.Finnie. 2015. Micropropagation of Zantedeschia aethiopica (L.) Spreng.: towards its commercial use in the cut flower industry. Propag. Ornam. Plants15(2), 73-78 [ Links ]

Jonytienè, V., R.Masienè, N.Burbulis, and A.Blinstrubienè. 2017. Factors affecting Zantedeschia Spreng. dedifferentiation in vitro. Biologija63(4), 334-340. Doi: 10.6001/biologija.v63i4.3608 [ Links ]

Krejzar, V., J.Mertelík, I.Pánková, K.Kloudová, and V.Kůdela. 2008. Pseudomonas marginalis associated with soft rot of Zantedeschia spp.. Plant Protect. Sci.44(3), 85-90. Doi: 10.17221/16/2008-PPS [ Links ]

Kulpa, D.. 2016. Micropropagation of calla lily (Zantedeschia rehmannii). Folia Hort.28(2), 181-186. Doi: 10.1515/fhort-2016-0021 [ Links ]

Lee, Y.S. and J.A.Ko. 2005. Effect of plant growth regulators on in vitro micropropagation of colored calla lily (Zantedeschia spp.). Korean J. Plant Res.18(1), 154-160. [ Links ]

Liao, M.-T., D.-F.Mou, Y.-C.Chang, and C.-W.Tsai. 2020. Vector transmission of konjac mosaic virus to calla lily (Zantedeschia spp.) by aphids. Ann. App. Biol.177(3), 367-373. Doi: 10.1111/aab.12628 [ Links ]

Lim, J.-A., S.Jee, D.H.Lee, E.Roh, K.Jung, C.Oh, and S.Heu. 2013. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J. Microbiol. Biotechnol.23(8), 1147-1153. Doi: 10.4014/jmb.1304.04001 [ Links ]

Martínez-Hernández, A.2022. Propagación in vitro de nuevas variedades de alcatraz (Zantedeschia aethiopica L. Spreng). MSc thesis. Universidad Autónoma Chapingo, Chapingo, Mexico. [ Links ]

Mikiciński, A., P.Sobiczewski, M.Sulikowska, J.Puławska, and J.Treder. 2010. Pectolytic bacteria associated with soft rot of calla lily (Zantedeschia spp.) tubers. J. Phytopathol.158(4), 201-209. Doi: 10.1111/j.1439-0434.2009.01597.x [ Links ]

Muñoz-Escobar, E.M. and J.A.Palacio-Baena. 2010. Efectos del cloruro de mercurio (HgCl2) sobre la sobrevivencia y crecimiento de renacuajos de Dendrosophus bogerti. Actu. Biol.32(93), 189-197. Doi: 10.17533/udea.acbi.13814 [ Links ]

Naor, V., J.Kigel, and M.Ziv. 2004a. Hormonal control of inflorescence development in plantlets of calla lily (Zantedeschia spp.) grown in vitro. Plant Growth Regul.42(1), 7-14. Doi: 10.1023/B:GROW.0000014889.16196.f7 [ Links ]

Naor, V., J.Kigel, M.Ziv, and M.Flaishman. 2004b. A developmental pattern of flowering in colored Zantedeschia spp: effects of bud position and gibberellin. J. Plant Growth Regul.23(4), 269-279. Doi: 10.1007/BF02637250 [ Links ]

Nery, F.C., V.L.A.Goulart, M.A.Viol, P.D.O.Paiva, R.Paiva, D.O.Prudente, and M.C.Nery. 2015. In vitro germination and chemical composition of Zantedeschia aethiopica callus. Acta Hortic.1083, 189-196. Doi: 10.17660/ActaHortic.2015.1083.22 [ Links ]

Nery, F.C., D.O.Prudente, R.Paiva, M.C.Nery, P.D.O.Paiva, and D.Domiciano. 2018. Micropropagation and histological analysis of calla lily. Acta Hortic.1224, 183-190. Doi: 10.17660/ActaHortic.2018.1224.24 [ Links ]

Ngamau, K.. 2001. Development of an in vitro culture procedure using seeds from Zantedeschia aethiopica 'Green Goddess' as explants. Gartenbauwissenschaft66(3), 133-139. [ Links ]

Ngamau, K.. 2008. Selection for early flowering, temperature and salt tolerance of Zantedeschia aethiopica 'Green Goddess'. Acta Hortic.766, 155-162. Doi: 10.17660/ActaHortic.2008.766.19 [ Links ]

Nic-Can, G.I., J.R.Avilez-Montalvo, R.N.Aviles-Montalvo, R.E.Márquez-López, E.Mellado-Mojica, R.M.Galaz-Ávalos, and V.M.Loyola-Vargas. 2016. The relationship between stress and somatic embryogenesis. pp. 151-170. In: Loyola-Vargas, V. and N.Ochoa-Alejo (eds.). Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, Switzerland. Doi: 10.1007/978-3-319-33705-0_9 [ Links ]

Niyokuri, A.N. and S.Nyalala. 2023. Calla lily soft rot causal agents, symptoms, virulence and management: a review. Int. J. Hort. Sci.29(1), 60-68. Doi: 10.31421/ijhs/29/2023/11380 [ Links ]

Purmale, L., A.Korica, and R.Joffe. 2023. First accounts of Zantedeschia sp Dasheen and Konjac mosaic virus detection in Latvia. Acta Hortic.1359, 173-178. Doi: 10.17660/ActaHortic.2023.1359.21 [ Links ]

Ribeiro, M.N.O., M.Pasqual, A.B.Silva, and V.A.Rodrigues. 2014. Propagação in vitro de copo-de-leite: sulfato de adenina e 6-benzilaminopurina. Ornam. Hortic.20(1), 21-26. Doi: 10.14295/rbho.v20i1.660 [ Links ]

Rizzo, D., A.Panattoni, L.Stefani, M.Paoli, B.Nesi, S.Lazzereschi, S.Vanarelli, P.Farina, M.Della Bartola, A.Materazzi, and A.Luvisi. 2015. First report of Zantedeschia mild mosaic virus on Zantedeschia aethiopica in Italy. J. Plant Pathol.97(2), 399. [ Links ]

Sánchez, J., I.Capote, and M.Daquinta. 2010. Multiplicación in vitro de brotes de tres variedades de callas (Zantedeschia sp.) empleando sistema de inmersión temporal. Cienc. Tecnol.3(1), 1-5. Doi: 10.18779/cyt.v3i1.90 [ Links ]

Sánchez, J., M.Daquinta, and I.Capote. 2009. Multiplicación in vitro de Zantedeschia spp. variedad Treasure en sistemas de inmersión temporal. Biotecnol. Veg.9(4), 211-215. [ Links ]

Schwarz, O.J. and R.M.Beaty. 2000. Organogenesis. pp. 125-138. In: Trigiano, R.N. (ed.). Plant tissue culture concepts and laboratory exercises. 2nd ed. Routledge. Doi: 10.1201/9780203743133 [ Links ]

Sheu, S.-Y., C.-W.Huang, M.-Y.Hsu, C.Sheu, and W.-M.Chen. 2017. Cellvibrio Zantedeschiae sp. nov., isolated from the roots of Zantedeschia aethiopica. Int. J. Syst. Evol. Microbiol.67(9), 3615-3621. Doi: 10.1099/ijsem.0.002178 [ Links ]

Shin, J., S.Bae, and P.J.Seo. 2020. De novo shoot organogenesis during plant regeneration. J. Exp. Bot.71(1), 63-72. Doi: 10.1093/jxb/erz395 [ Links ]

Singh, M., M.S.Rathore, K.Coudhary, and N.S.Shekhawat. 2009. Direct shoot bud formation and tuberization from aseptically cultured root tubers of calla lily (Zantedeschia aethiopica L.). J. Plant Biochem. Biotechnol.18(2), 203-207. Doi: 10.1007/BF03263320 [ Links ]

Sun, X., X.Wang, B.S.Subedi, Y.Jiang, D.Wang, R.Gou, G.Zhang, W.Xu, and Z.Wei. 2023. Tissue culture of calla lily (Zantedeschia Spreng.): an updated review on the present scenario and future prospects. Phyton Int. J. Exp. Bot.92(8), 2413-2428. Doi: 10.32604/phyton.2023.029667 [ Links ]

Sun, X., Y.Wang, T.Yang, X.Wang, H.Wang, D.Wang, H.Liu, X.Wang, G.Zhang, and Z.Wei. 2022. Establishment of an efficient regeneration and Agrobacterium transformation system in mature embryos of calla lily (Zantedeschia spp.). Front. Gen.13, 1085694. Doi: 10.3389/fgene.2022.1085694 [ Links ]

Szabó, L.K., F.Desiderio, Z.Kirilla, A.Hegedűs, E.Várallyay, and A.Preininger. 2024. A mini-review on in vitro methods for virus elimination from Prunus sp. fruit trees. Plant Cell Tiss. Organ Cult.156(42). Doi: 10.1007/s11240-023-02670-9 [ Links ]

Trejo-Téllez, B.I., N.I.Torres-Flores, L.I.Trejo-Téllez, and V.M.Cisneros-Solano. 2013. El alcatraz blanco (Zantedeschia aethiopica (L.) K. Spreng) en el municipio de La Perla, Veracruz. Agro Productividad6(3). https://revista-agroproductividad.org/index.php/agroproductividad/article/view/457 ; May, 2021. [ Links ]

van der Wolf, J.M., S.H.De Boer, R.Czajkowski, G.Cahill, F.van Gijsegem, T.Davey, B.Dupuis, J.Ellicott, S.Jafra, M.Kooman, I.K.Toth, L.Tsror, I.Yedidia, and J.E.van der Waals. 2021. Management of diseases caused by Pectobacterium and Dickeya species. pp. 175-214. In: van Gijsegem, F., J.M.van der Wolf, and I.K.Toth (eds.). Plant diseases caused by Dickeya and Pectobacterium speciesSpringer, Cham, Switzerland. Doi: 10.1007/978-3-030-61459-1_6 [ Links ]

Wang, H., Z.Yang, S.Du, L.Ma, Y.Liao, Y.Wang, I.Toth, and J.Fan. 2018. Characterization of Pectobacterium carotovorum proteins differentially expressed during infection of Zantedeschia elliotiana in vivo and in vitro which are essential for virulence. Mol. Plant Pathol.19(1), 35-48. Doi: 10.1111/mpp.12493 [ Links ]

Waleron, M., A.Misztak, M.Waleron, M.Franczuk, J.Jońca, B.Wielgomas, A.Mikicinski, T.Popović, and K.Waleron. 2019. Pectobacterium zantedeschiae sp. nov. a new species of a soft rot pathogen isolated from calla lily (Zantedeschia spp.). Syst. Appl. Microbiol.42(3), 275-283. Doi: 10.1016/j.syapm.2018.08.004 [ Links ]

Wei, Z., H.Zhang, Y.Wang, Y.Li, M.Xiong, X.Wang, and D.Zhou. 2017. Assessing genetic diversity and population differentiation of colored calla lily (Zantedeschia Hybrid) for an efficient breeding program. Genes8(6), 168. Doi: 10.3390/genes8060168 [ Links ]

Xiao-Chun, S.H.U.. 2010. Study on the tissue culture and rapid propagation of Zantedeschia hybrida ‘Feng Yan’. J. Anhui Agr. Sci.38(26), 14268-14269. [ Links ]

Yan, L.I., X.T.Wei, Q.H.Gan, J.I.Ying, X.L.Shao, and Y.C.Wang. 2014. Isolation and identification of soft rot bacteria on imported Zantedeschia. J. Food Saf. Qual.5(12), 3944-3946. [ Links ]

Received: May 15, 2024; Revised: May 29, 2024; Accepted: July 10, 2024

3Corresponding author. jcruzc@chapingo.mx

Conflict of interests:

The manuscript was prepared and reviewed with the participation of the authors, who declare that there exists no conflict of interest that puts at risk the validity of the presented results.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License