Services on Demand
Journal
Article
Indicators
- 
 Cited by SciELO Cited by SciELO
- 
 Access statistics Access statistics
Related links
- 
 Cited by Google Cited by Google
- 
 Similars in
    SciELO Similars in
    SciELO
- 
 Similars in Google Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.40 no.2 Bogotá July./Dec. 2006
Francisco Javier González-Acuña*, Juan Manuel Márquez-Bobadilla**
* Universidad Nacional Autónoma de Mexico, México
Instituto de Matemáticas UNAM and CIMAT Circuito Interior S/N, Ciudad Universitaria, 04510 C.P. 3600 México D.F., México
e-mail: ficomx@yahoo.com.mx
** Universidad de Guadalajara, México
Departamento de Matemáticas CUCEI-Universidad de Guadalajara and CIMAT A.C. Callejón Jalisco S/N Valenciana, 36240 A.P. 402 Guanajuanto, México
e-mail: juanm@cimat.mx
Abstract. In this note we prove that, if N3 = P#P#P, where P := RP2, then the canonical homomorphism from Diff(N3) onto the homeotopy group Mod(N3) has a section. To do this we first prove that Mod(N3) = GL(2; Z).
Keywords and phrases. Homeotopy group, non-orientable surface.
2000 Mathematics Subject Classification. Primary: 57M60. Secondary: 20F38.
Resumen. En esta nota probamos que, si N3 = P#P#P, donde P := RP2, entonces el homomorfismo canónico de Diff(N3) sobre el grupo de homeotopía Mod(N3) tiene una sección. Para hacer esto, primero probamos que Mod(N3) = GL(2; Z).
FULL TEXT IN PDF
[1] S. Akbulut & H. King, Submanifolds and the homology of non singular algebraic varieties, Amer. J. Math., 107 (1985), 45-83. [ Links ]
[2] J. S. Birman & D. R. J. Chillingworth, On the homeotopy group of a nonorientable surface, Proc. Camb. Phil. Soc., 71 (1972), 437-448. [ Links ]
[3] J. S. Birman & M. H. Hilden, Lifting and projecting homeomorphisms, Arch. Math., 23 (1972), 428-434. [ Links ]
[4] D. B. A. Epstein, Curves on 2¡manifolds and isotopies, Acta Math., 115 (1966), 83-107. [ Links ]
[5] N. V. Ivanov, Mapping Class Groups, Handbook of Geometric Topology, Elsevier Science, N.H. (2002), 523-633. [ Links ]
[6] W. B. R. Lickorish, Homeomorphisms of non-orientable two-manifolds, Math. Proc. Camb. Phil. Soc., 59 (1963), 307-317. [ Links ]
[7] J. M. Márquez, On the trigenus of surface bundles over S1, Aportaciones Matemáticas, 35 (2005), 201-215. [ Links ]
[8] G. Mikhalkin, Blowup equivalence of smooth closed manifolds, Topology, 36 (1997), 287-299. [ Links ]
[9] Sh. Morita, Characteristic classes of surface bundles, Bull. Amer. Math. Soc., 11 (1984) 2, 386-388. [ Links ]
[10] Sh. Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987) 3, 552-577. [ Links ]
[11] D. Rolfsen, Knots and links, Math. Lectures Series. 7. Berkeley, Ca. Publish Perish, Inc. 1976. [ Links ]
[12] H. Torriani, Subgroups of the Klein bottle group and the mapping class group of the Klein Bottle, Rend. Mat. Appl., 7 (1987) 7, 215-222. [ Links ]
(Recibido en mayo de 2006. Aceptado en julio de 2006)

 
 








 English (pdf)
English (pdf)
     Article in xml format
Article in xml format Article references
Article references
 Automatic translation
Automatic translation Send this article by e-mail
Send this article by e-mail
 Permalink
Permalink

