Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.46 no.2 Bogotá July/Dec. 2012
1University of Saint Thomas, Minnesota, USA. Email: EdithAdan@illinoisalumni.org
2University of Southern Mississippi, Mississippi, USA. Email: john.m.harris@usm.edu
Let \SL(2,q) be the group of 2\times 2 matrices with determinant one over a finite field F of size q. We prove that if q is even, then the product of any two noncentral conjugacy classes of \SL(2,q) is the union of at least q-1 distinct conjugacy classes of \SL(2,q). On the other hand, if q>3 is odd, then the product of any two noncentral conjugacy classes of \SL(2,q) is the union of at least \fracq+32 distinct conjugacy classes of \SL(2,q).
Key words: Conjugacy classes, Matrices over a finite field, Products of conjugacy classes, Special linear group.
2000 Mathematics Subject Classification: 15A33, 20E45, 20G40.
Sea \SL(2,q) el grupo de las matrices 2\times 2 con determinante uno sobre un campo finito F de tamaño q. Se prueba que si q es par, entonces el producto de cualesquiera dos clases conjugadas no centrales de \SL(2,q) es la unión de al menos q-1 distintas clases conjugadas de \SL(2,q). Por otro lado, si q>3 es impar, entonces el producto de cualesquiera dos clases conjugadas no centrales de \SL(2,q) es la unión de al menos \fracq+32 distintas clases conjugadas de \SL(2,q).
Palabras clave: Clases conjugadas, matrices sobre un campo finito, producto de clases conjugadas, grupo especial lineal.
Texto completo disponible en PDF
References
[1] E. Adan-Bante, J. Harris, and H. Verril, Products of Conjugacy Classes of the Alternating Group, preprint, [ Links ] 0000.
[2] E. Adan-Bante and H. Verrill, 'Symmetric Groups and Conjugacy Classes', J. Group Theory 11, 3 (2008), 371-379. [ Links ]
[3] Z. Arad and M. Herzog, Products of Conjugacy Classes in Groups, Vol. 1112 of Lecture notes in mathematics, Springer-Verlag, [ Links ] 1985.
[4] R. Gow, 'Commutators in Finite Simple Groups of Lie Type', Bull. London Math. Soc. 32, (2000), 311-315. [ Links ]
[5] T. G. Group, GAP - Groups, Algorithms, and Programming, Version 4.4.10, (2007). http://www.gap-system. [ Links ]org
[6] G. James and M. Liebeck, Representations and Characters of Groups, Cambridge mathematical textbooks, Cambridge University Press, [ Links ] 2001.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv46n2a01,
AUTHOR = {Adan-Bante, Edith and Harris, John M.},
TITLE = {{On Conjugacy Classes of \boldsymbol{\SL(2,q)}}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2012},
volume = {46},
number = {2},
pages = {97--111}
}