SciELO - Scientific Electronic Library Online

 
vol.39 issue1A Two Parameter Discrete Lindley DistributionAsymptotic Information Measures Discrimination of Non-Stationary Time Series Based on Wavelet Domain author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.39 no.1 Bogotá Jan./June 2016

 

Enhancing the Mean Ratio Estimators for Estimating Population Mean Using Non-Conventional Location Parameters

Mejoras a los estimadores de razón de medias con el fin de estimar la media poblacional usando parámetros de localización no convencionales

MUHAMMAD ABID1, NASIR ABBAS2, HAFIZ ZAFAR NAZIR3, ZHENGYAN LIN4

1Institute of Statistics, Zhejiang University, Faculty of Basic and Applied Sciences, Department of Mathematics, Hangzhou, China. Government College University, Faculty of Science And Technology, Department of Statistics, Faisalabad, Pakistan. Lecturer. Email: mabid@gcuf.edu.pk
2Government College University, Faculty of Science And Technology, Department of Statistics, Faisalabad, Pakistan. Visiting Lecturer. Email: nasirbhatti9181@yahoo.com
3University of Sargodha, Faculty of Science, Department of Statistics, Sargodha, Pakistan. Assistant Professor. Email: hafizzafarnazir@yahoo.com
4Institute of Statistics, Zhejiang University, Faculty of Basic and Applied Sciences, Department of Mathematics, Hangzhou, China. Professor. Email: zlin@zju.edu.cn


Abstract

Conventional measures of location are commonly used to develop ratio estimators. However, in this article, we attempt to use some non-conventional location measures. We have incorporated tri-mean, Hodges-Lehmann, and mid-range of the auxiliary variable for this purpose. To enhance the efficiency of the proposed mean ratio estimators, population correlation coefficient, coefficient of variation and the linear combinations of auxiliary variable have also been exploited. The properties associated with the proposed estimators are evaluated through bias and mean square errors. We also provide an empirical study for illustration and verification.

Key words: Bias, Correlation Coefficient, Coefficient of Variation, Hodges-Lehmann Estimator, Mean Square Error, Tri-Mean.


Resumen

Las medidas convencionales de localización son a menudo usadas con el fin de desarrollar estimatores de raz ón. Sin embargo, en este artículo, se hace un intento por usar algunas medidas de localización no convencionales. Se incorpora la trimean, el estimador de Hodges-Lehmann y el rango medio de la variable auxiliar con este propósito. Para mejorar la eficiencia de los estimadores de razón de medias propuestos, el coeficiente de correlación poblacional, el coeficiente de variación y combinaciones lineales de variables auxiliares también han sido explotados. Las propiedades asociadas con los estimadores propuestos son evaluadas a través del sesgo y el error cuadrático medio. Un studio empírico es presentado con fines de ilustración y verificación.

Palabras clave: coeficiente de correlación poblacional, coeficiente de variación, error cuadrático medio, estimador de Hodges-Lehmann, sesgo, trimean.


Texto completo disponible en PDF


References

1. Cochran, W. G. (1940), Sampling Techniques, 3 edn, Wiley Eastern Limited, New York.         [ Links ]

2. Ferrell, E. (1953), 'Control charts using midranges and medians', Industrial Quality Control 9(5), 30-34.         [ Links ]

3. Hettmansperger, T. & McKean, J. W. (1988), Robust Nonparametric Statistical, 1 edn, Arnold, London.         [ Links ]

4. Jeelani, M. I., Maqbool, S. & Mir, S. A. (2013), 'Modified ratio estimators of population mean using linear combination of coefficient of skewness and quartile deviation', International Journal of Modern Mathematical Sciences 6(3), 174-183.         [ Links ]

5. Kadilar, C. & Cingi, H. (2004), 'Ratio estimators in simple random sampling', Applied Mathematics and Computation 151, 893-902.         [ Links ]

6. Kadilar, C. & Cingi, H. (2006), 'An improvement in estimating the population mean by using the correlation coefficient', Hacettepe Journal of Mathematics and Statistics 35(1), 103-109.         [ Links ]

7. Murthy, M. (1967), Sampling Theory and Methods, 1 edn, Statistical Publishing Society, India.         [ Links ]

8. Nazir, H., Riaz, M., Ronald, J. D. & Abbas, N. (2013), 'Robust cusum control charting', Quality Engineering 25(3), 211-224.         [ Links ]

9. Rao, T. J. (1991), 'On certain methods of improving ratio and regression estimators', Communications in Statistics-Theory and Methods 20(10), 3325-3340.         [ Links ]

10. Singh, D. & Chaudhary, F. S. (1986), Theory and Analysis of Sample Survey Designs, 1 edn, New Age International Publisher, India.         [ Links ]

11. Singh, H. P. & Tailor, R. (2003), 'Use of known correlation coefficient in estimating the finite population means', Statistics in Transition 6(4), 555-560.         [ Links ]

12. Singh, H. P., Tailor, R., Tailor, R. & Kakran, M. (2004), 'An improved estimator of population mean using power transformation', Journal of the Indian Society of Agricultural Statistics 58(2), 223-230.         [ Links ]

13. Sisodia, B. V. S. & Dwivedi, V. K. (2012), 'A modified ratio estimator using coefficient of variation of auxiliary variable', Journal of the Indian Society of Agricultural Statistics 33(1), 13-18.         [ Links ]

14. Subramani, J. & Kumarapandiyan, G. (2012a), 'Modified ratio estimators using known median and co-efficient of kurtosis', American Journal of Mathematics and Statistics 2(4), 95-100.         [ Links ]

15. Subramani, J. & Kumarapandiyan, G. (2012b), 'Estimation of population mean using known median and co-efficient of skewness', American Journal of Mathematics and Statistics 2(5), 101-107.         [ Links ]

16. Subramani, J. & Kumarapandiyan, G. (2012b), 'Estimation of population mean using co-efficient of variation and median of an auxiliary variable', International Journal of Probability and Statistics 1(4), 111-118.         [ Links ]

17. Upadhyaya, L. N. & Singh, H. (1999), 'Use of transformed auxiliary variable in estimating the finite population mean', Biometrical Journal 41(5), 627-636.         [ Links ]

18. Wang, T., Li, Y. & Cui, H. (2007), 'On weighted randomly trimmed means', Journal of Systems Science and Complexity 20(1), 47-65.         [ Links ]

19. Yan, Z. & Tian, B. (2010), 'Ratio method to the mean estimation using coefficient of skewness of auxiliary variable', Information Computing and Applications 106, 103-110.         [ Links ]


[Recibido en junio de 2014. Aceptado en marzo de 2015]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv39n1a05,
    AUTHOR  = {Abid, Muhammad and Abbas, Nasir and Zafar Nazir, Hafiz and Lin, Zhengyan},
    TITLE   = {{Enhancing the Mean Ratio Estimators for Estimating Population Mean Using Non-Conventional Location Parameters}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2016},
    volume  = {39},
    number  = {1},
    pages   = {63-79}
}