Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Rev.Colomb.Estad. vol.43 no.2 Bogotá July/Dec. 2020 Epub Dec 05, 2020
https://doi.org/10.15446/rce.v43n2.79151
Original articles of research
Convergence Theorems in Multinomial Saturated and Logistic Models
Teoremas de convergencias en los modelos saturados y logísticos multinomiales
1Programa de ingeniería industrial, Facultad de ingeniería, Universidad Simón Bolívar, Barranquilla, Colombia
2Departamento de Matemáticas y Estadística, División de Ciencias Básicas, Universidad de Norte, Barranquilla, Colombia
3Departamento de Ciencias Básicas, Corporación Politécnico de la Costa Atlántica, Barranquilla, Colombia
In this paper, we develop a theoretical study about the logistic and saturated multinomial models when the response variable takes one of R ≥ 2 levels. Several theorems on the existence and calculations of the maximum likelihood (ML) estimates of the parameters of both models are presented and demonstrated. Furthermore, properties are identified and, based on an asymptotic theory, convergence theorems are tested for score vectors and information matrices of both models. Finally, an application of this theory is presented and assessed using data from the R statistical program.
Key words: Multinomial logit model; Saturated model; Logistic regression; Maximum likelihood estimator; Score vector; Fisher information matrix
En este artículo se desarrolla un estudio teórico de los modelos logísticos y saturados multinomiales cuando la variable de respuesta toma uno de R ≥ 2 niveles. Se presentan y demuestran teoremas sobre la existencia y cálculos de las estimaciones de máxima verosimilitud (ML-estimaciones) de los parámetros de ambos modelos. Se encuentran sus propiedades y, usando teoría asintótica, se prueban teoremas de convergencia para los vectores de puntajes y para las matrices de información. Se presenta y analiza una aplicación de esta teoría con datos tomados de la librería aplore3 del programa R.
Palabras clave: Modelo logístico multinomial; Modelo saturado; Regresión logística; Estimador de máxima verosimilitud; Vector score; Matriz de información de Fisher
References
Agresti, A. (2013), Categorical Data Analysis, Wiley Series in Probability and Statistics, 3 edn, John Wiley and Sons. [ Links ]
Anderson, C., Verkuilen, J. & Peyton, B. (2010), 'Modeling polytomous item responses using simultaneously estimated multinomial logistic regression models', Journal of Educational and Behavioral Statistics 35(4), 422-452. [ Links ]
Begg, C. B. & Gray, R. (1984), 'Calculation of polychotomous logistic regression parameters using individualized regressions', Biometrika 71(1), 11-18. [ Links ]
Chan, Y. H. (2005), 'Biostatistics 305. multinomial logistic regression', Singapore medical journal 46(6), 259-269. [ Links ]
Chen, Y.-H. & Kao, J.-T. (2006), 'Multinomial logistic regression approach to haplotype association analysis in population-based case-control studies', BMC Genetics 7(1), 1-12. [ Links ]
Chuang, H.-L. (1997), 'High school youths' dropout and re-enrollment behavior', Economics of Education Review 16(2), 171-186. [ Links ]
Cox, D. R. (1958), 'The regression analysis of binary sequences', Journal of the Royal Statistical Society: Series B (Methodological) 20(2), 215-232. [ Links ]
Darlington, R. B. (1990), Regression and linear models, McGraw-Hill College. [ Links ]
Dessens, J., Jansen, W., G. B. Jansen, W., Ganzeboom, B. & Van der Heijden, P. (2003), 'Patterns and trends in occupational attainment of first jobs in the netherlands, 1930-1995: Ordinary least squares regression versus conditional multinomial logistic regression', Journal of the Royal Statistical Society. Series A (Statistics in Society) 166(1), 63-84. [ Links ]
Díaz, L. & Morales, M. (2009), Análisis estadístico de datos categóricos, Editorial Universidad Nacional de Colombia. [ Links ]
Ekström, M., Esseen, P.-A., Westerlund, B., Grafström, A., Jonsson, B. & Stáhl, G. (2018), 'Logistic regression for clustered data from environmental monitoring programs', Ecological Informatics 43, 165 - 173. [ Links ]
Exavery, A., Mbaruku, G., Mbuyita, S., Makemba, A., Kinyonge, I. & Kweka, H. (2014), 'Factors affecting uptake of optimal doses of sulphadoxine-pyrimethamine for intermittent preventive treatment of malaria in pregnancy in six districts of tanzania', Malaria Journal 13(1), 2-9. [ Links ]
Fahrmeir, L. & Kaufmann, H. (1985), 'Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models', Annals of Statistic 13(1), 342-368. [ Links ]
Fontanella, C. A., Early, T. J. & Phillips, G. (2008), 'Need or availability? modeling aftercare decisions for psychiatrically hospitalized adolescents', Children and Youth Services Review 30(7), 758 - 773. [ Links ]
Harrell, F. (2015), Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, Springer Series in Statistics, Springer International Publishing. [ Links ]
Harville, D. (1997), Matrix algebra from a statistician's perspective, Springer-Verlag. [ Links ]
Hosmer, D. & Lemeshow, S. (2000), Applied logistic regression, Wiley Series in Probability and Statistics, second edition edn, John Wiley & Sons Inc. [ Links ]
Kim, J. (2015), 'School socioeconomic composition and adolescent sexual initiation in malawi', Studies in Family Planning 46(3), 263-279. [ Links ]
Kleinbaum, D. & Klein, M. (2010), Logistic Regression. A Self-Learning Text, Statistics for Biology and Health, third edition edn, Springer-Verlag New York. [ Links ]
LLinás, H. (2006), 'Precisiones en la teoría de los modelos logísticos', Revista Colombiana de Estadística 29(2), 239-265. [ Links ]
LLinás, H., Arteta, M. & Tilano, J. (2016), 'El modelo de regresión logística para el caso en que la variable de respuesta puede asumir uno de tres niveles: estimaciones, pruebas de hipótesis y selección de modelos', Revista de Matemática: Teoría y Aplicaciones 23(1), 173-197. [ Links ]
LLinás, H. & Carreño, C. (2012), 'The multinomial logistic model for the case inwhich the response variable can assume one of three levels and related models', Revista Colombiana de Estadística 35(1), 131-138. [ Links ]
Lloyd, C. J. & Frommer, D. J. (2008), 'An application of multinomial logistic regression to estimating performance of a multiple-screening test with incomplete verification', Journal of the Royal Statistical Society. Series C (Applied Statistics) 57(1), 89-102. [ Links ]
Long, J. S. (1987), 'A graphical method for the interpretation of multinomial logit analysis', Sociological Methods & Research 15(4), 420-446. [ Links ]
McCullagh, P. (1983), 'Quasi-likelihood functions', The Annals of Statistics 11(1), 59-67. [ Links ]
McCullagh, P. & Neider, J. (2018), Generalized Linear Models, CRC Press. [ Links ]
McFadden, D. (1973), Conditional Logit Analysis of Qualitative Choice Behavior, BART impact studies final report series: Traveler behavior studies, Institute of Urban and Regional Development, University of California. [ Links ]
McNevin, D., Santos, C., Gamez-Tato, A., Álvarez-Dios, J., Casares, M., Daniel, R., Phillips, C. & Lareu, M. (2013), 'An assessment of bayesian and multinomial logistic regression classification systems to analyse admixed individuals', Forensic Science International: Genetics Supplement Series 4(1), 63 - 64. [ Links ]
Monroy, L., Morales, M. & Dávila, L. (2018), Análisis estadístico de datos categóricos, Universidad Nacional de Colombia. [ Links ]
Monyai, S., Lesaoana, M., Darikwa, T. & Nyamugure, P. (2016), 'Application of multinomial logistic regression to educational factors of the 2009 general household survey in south africa', Journal of Applied Statistics 43(1), 128-139. [ Links ]
Peng, C.-Y. J., Lee, K. L. & Ingersoll, G. M. (2002), 'An introduction to logistic regression analysis and reporting', The journal ofeducational research 96(1), 3-14. [ Links ]
Pohlman, J. & Leitner, D. (2003), 'A comparison of ordinary least squares and logistic regression', The Ohio journal of science 103, 118-125. [ Links ]
Rao, C. R., Rao, C. R., Statistiker, M., Rao, C. R. & Rao, C. R. (1973), Linear statistical inference and its applications, Vol. 2, Wiley New York. [ Links ]
Schnor, C., Vanassche, S. & Bavel, J. (2017), 'Stepfather or biological father? education-specific pathways of postdivorce fatherhood', Demographic Research 37, 1659-1694. [ Links ]
Tan, Q., Christiansen, L., Christensen, K., Kruse, T. A. & Bathum, L. (2004), 'Apolipoprotein e genotype frequency patterns in aged danes as revealed by logistic regression models', European Journal ofEpidemiology 19(7), 651-656. *http://www.jstor.org/stable/3582754 [ Links ]
Tilano, J. & Arteta, M. (2012), Modelos logísticos multinomiales: estimaciones, pruebas y selección de modelos, Master's thesis, Universidad del Norte. [ Links ]
Wedderburn, R. W. M. (1974), 'Quasi-likelihood functions, generalized linear models, and the gauss-newton method', Biometrika 61(3), 439-447. [ Links ]
Wedderburn, R. W. M. (1976), 'On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models', Biometrika 63(1), 27-32. [ Links ]
Zacks, S. (1971), The Theory of Statistical Inference, Wiley series in probability and mathematical statistics, John Wiley. [ Links ]
Received: October 2019; Accepted: May 2020