SciELO - Scientific Electronic Library Online

 
 issue107Numerical analysis of soil desaturation by an air injection methodNew approach for filling simulations of dual-scale preforms using BEM for manufacturing of composites materials author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Facultad de Ingeniería Universidad de Antioquia

Print version ISSN 0120-6230On-line version ISSN 2422-2844

Abstract

CASALLAS, Alejandro et al. Understanding the atmospheric characteristics of high polluted events in a tropical megacity. Rev.fac.ing.univ. Antioquia [online]. 2023, n.107, pp.53-65.  Epub July 13, 2023. ISSN 0120-6230.  https://doi.org/10.17533/udea.redin.20220682.

About 20% of the atmospheric pollution variations are linked to local meteorology. This relationship may be more important in places with dense populations, such as Latin American cities since the topography and fast multiscale changes are part of the tropical climate. Even so, this possibility has not been addressed in previous studies. This research aims to characterize the relationship between tropical meteorological variables and PM2.5 levels during high pollution events. The relationship between wind field, Turbulent Kinetic Energy (TKE), radiation, temperature, relative humidity, boundary layer height, and atmospheric stability with PM2.5 concentration was investigated. Statistical correlations and the parcel method were used to analyze the relationship between vertical motions and PM2.5. Obtained results show that the stability and vertical velocity do not significantly affect pollution levels. We identified some signals that are strongly related to PM2.5 high concentrations: weaker than average horizontal wind speed and TKE throughout the day, easterly winds in the morning (associated with the transport of ashes from wildfires produced on the Eastern plains), combined with a higher-than-average radiation peak. These results lead to a better understanding of the PM2.5 variations, which can be applied for the improvement of air quality models and have the potential to be part of a novel policy to manage air quality risk.

Keywords : Particulate matter; atmospheric stability; Turbulent Kinetic Energy; tropical city; pollution variation.

        · abstract in Spanish     · text in English     · English ( pdf )