Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales
Print version ISSN 0370-3908
Abstract
CASTANEDA, Román and MATTEUCCI, Giorgio. Geometric model for interference and diffraction with waves and particles. Rev. acad. colomb. cienc. exact. fis. nat. [online]. 2019, vol.43, n.167, pp.177-192. ISSN 0370-3908. https://doi.org/10.18257/raccefyn.807.
Interference and diffraction with classical waves and quantum particles is discussed in the framework of a geometric model based on its own physical principle and general law. The principle is the interaction between individual real point emitters, that characterize the waves and particles, and the virtual point emitters, that characterize the setup. The law is an energy equation that involves the energy of the wave disturbance or the particle arriving to any detector point and the potential energy determined by the setup. In this framework, the setup is configured in a preparation-measurement scheme with two accessible states named the source-turned-off and the source-turned-on states. Two-point correlation cones are prepared which induce geometric potential cones, that distribute the energy of the waves or particles to be measured, once the interaction between the point emitters takes place. Wave-particle duality, self-interference and wave collapse are irrelevant in the framework of this model. © 2019. Acad. Colomb. Cienc. Ex. Fis. Nat.
Keywords : Interference; Diffraction; Geometric potential; Point emitters.