Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales
Print version ISSN 0370-3908
Abstract
BERNAL-RUIZ, Marcela et al. Brewer's spent grain as substrate for enzyme and reducing sugar production using Pénicillium sp. HC1. Rev. acad. colomb. cienc. exact. fis. nat. [online]. 2021, vol.45, n.176, pp.850-863. Epub Feb 04, 2022. ISSN 0370-3908. https://doi.org/10.18257/raccefyn.1379.
Brewer's spent grain (BSG) is the main solid waste from the brewing process. It is recognized as a valuable resource for biobased industries because of its composition, high availability, and low cost. The objective of this study was to employ BSG as a substrate to produce the enzymes endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase, as well as reducing sugars using Pénicillium sp. HC1. For enzyme production, we evaluated BSG submerged fermentation at different concentrations (1%, 3%, and 5%, w/v) and two sources of nitrogen (yeast extract and ammonium sulfate) on different days (6, 10, and 12) in a 100 mL Erlenmeyer flask. The highest enzyme activity was obtained after 10 days. The enzyme extract obtained using 3% BSG (w/v) and 5 g L-1 of ammonium sulfate showed the highest xylanase activity (25013 ± 1075 U L-1). Using BSG 5% (w/v) without nitrogen supplementation, the endoglucanase activity was 909.7±14.2 U L-1 while under the same conditions but using BSG 3% (w/v), the β-glucosidase and cellobiohydrolase activity was 3268.6 ±229.9 U L-1 and 103.15±8.1 U L-1, respectively. Maximum reducing sugar concentrations using an enzyme dosage of 1000 U g-1 of xylanase were: 2.7 g L-1 xylose, 1.7 g L-1 arabinose, and 3.3 g L-1 glucose after 6 h of hydrolysis. Results demonstrated it is possible to produce enzymes and reducing sugars using Pénicillium sp. HC1 and BSG as substrate and BSG grinding only as pretreatment.
Keywords : Brewer's spent grain; Pénicillium sp; Xylanase; Reducing sugars; Hydrolysate, cellulase production.