Introducción
El crecimiento acelerado de la industria y la expansión urbana se consideran como las principales fuentes generadoras de residuos sólidos y líquidos, llegando a afectar de forma directa y considerablemente diversos entornos ecosistémicos, de entre los cuales cabe mencionar inicialmente la estabilidad de los suelos y los cuerpos de aguas 1. El suelo contiene importantes trazas de metales, como el As >60%, Cd <5% y Zn <25%. Algunos estudios se han orientado en la búsqueda de alternativas efectivas y económicas en la remoción, retención y absorción de elementos contaminantes y tóxicos como los metales pesados 2, por ejemplo Park 3 propone como una alternativa innovadora los Biochars; dada la capacidad que estos tienen de retener considerablemente las concentraciones de ciertos metales como el Cd, Cu y Pb. Por otro lado M Ahmad et al. 4 Resalta que la implementación de distintos biochars es influida por la temperatura de la pirólisis y el tipo de materia prima. Así mismo Al-Wabel et al. 5 presenta el conocarpus como una alternativa efectiva como enmienda del suelo para la inmovilización de metales pesados y para reducir su fitotoxicidad.
El Biochar ha despertado un fuerte interés en las áreas investigativas, debido a algunos parámetros puntuales como; Ph, humedad, CE, inmovilización y disponibilidad de metales 5. Igualmente dado a sus principales características como: la biomasa, temperaturas en la que se produce, retención de metales pesados y la reducción de la fitotoxicidad como lo plantea Al-Wabel et al. & Bandara et al. 5,6. Se considera como una alternativa adecuada en procesos de remediación de los suelos contaminados por metales y otros elementos, reduciendo la movilidad y biodisponibilidad de los suelos 7), (8. Así mismo, Karami et al. 9 resalta que los avances positivos de las propiedades fisicoquímicas del medio a tratar (Suelo, Agua) sobre el uso de Biochars, donde se incrementa la eficiencia en la retención de sustancias tóxicas, se debe en el uso de mezclas con biochars y compost, aumentando el porcentaje de eliminación de metales como el plomo (Pb) y cobre (Cu) y reduciendo de la acidez del suelo.
Para lograr los objetivos anteriores, inicialmente se realizó una búsqueda en las bases de datos de Web of Science (en lo sucesivo, WoS) y Scopus, con el término de búsqueda "Biochar". A partir de estas bases de datos, se derivaron y procesaron un valor de (1408 referencias en total) utilizando las herramientas de Bibliometrix. Los artículos identificados en las bases de datos se extrajeron gracias a la aplicación 10. Finalmente, se procedió a analizar las redes generadas a partir de las referencias obtenidas, para lo cual se utilizó la aplicación Gephi 9,11, en la que se ordenaron los artículos más significativos y relevantes según su impacto (índice de citación). En la presentación de los documentos se utiliza un diagrama de árbol, las raíces son los documentos o artículos clásicos, los troncos son artículos considerados estructurales y, por último, las hojas son los artículos más nuevos; dada la representación del documento y sus puntos de vista, utilizando este esquema, los investigadores pueden obtener información clave sobre la evolución de Biochar.
Este artículo se divide en tres partes, comenzando con una breve introducción, seguida de los métodos utilizados para la búsqueda, identificación, selección y procesamiento de artículos como base de la investigación, con el uso de herramientas bibliométricas. La segunda parte presenta los avances y hallazgos de la investigación. Finalmente, concluye con los resultados de los aspectos y hallazgos más representativos del documento, enfatizando las limitaciones del estudio.
Metodología
El proceso metodológico desarrollado en esta investigación está dividido en dos fases o etapas. La primera etapa, es un mapeo científico del tema de interés, implementando bibliometría de las productividades científicas registradas en Scopus y WoS; La segunda etapa, se realiza una examinación de redes que facilita establecer documentos con más importancia sobre biochars y metales, también se dispone de grupos que actualmente sobresalen en el campo de estudio o del área.
Mapeo científico
Para el análisis de la producción y el mapeo científico se utilizaron cinco métodos bibliométricos propuestos por Čater & Zupic 12. 1. Análisis de citaciones; 2. Análisis de co-ocurrencia de palabras; 3. Análisis de cocitaciones; 4. Análisis de coautores; 5. Análisis de acoplamiento bibliográfico. Su aplicación conjunta en WoS y Scopus ha permitido la expansión exitosa de dominios de conocimientos 13, estas dos bases de datos se consideran como las principales y más importantes a nivel mundial 14,15. La Tabla 1 a continuación enumera los parámetros de búsqueda.
Base de datos | Scopus | Wos |
---|---|---|
Período de búsqueda | 2000 - 2021 | |
Fecha de búsqueda | 04/04/2022 | |
Tipo de revista | Todo tipo de revista | |
Criterios de búsqueda | Título | |
Términos de búsqueda | Biochar AND metals OR metaloids OR metales OR metaloides | |
Resultados | 740 | 668 |
Resultados totales | 817 |
A partir de los criterios de búsqueda se registraron 740 en Scopus y 668 en WoS , al combinar estos dos resultados y eliminar los datos duplicados, se generó un resultado de 817 artículos interesados que equivale una superposición del 42% en estas dos bases de datos, donde se evidencio la oportunidad de usarlas conjuntamente. Al involucrar los términos de búsqueda Biochar, Metals, Metaloids en español e inglés, se procuró cubrir la mayor cantidad de registros dentro de las bases de datos. Se encontró que el 92,9% de las publicaciones encontradas en estas bases de datos se encuentran en inglés, y del 7,1% se encuentran en chino. Se relaciona que el idioma que predomina en el área de interés en las bases de datos es el Inglés, las distintas revistas y autores hacen publicaciones en este idioma con el fin de incrementar la visibilidad 16. La herramienta que se utilizó en el análisis bibliométrico fue la aplicación Bibliometrix 17, esta herramienta es de uso libre que facilita trabajar con otras base de datos y que cuentan con diversas y amplias funciones, también ha sido usada y validada por otros estudios 18-25.
Análisis de red
Se fusionaron los registros obtenidos en WoS y Scopus, se eliminaron los archivos duplicados, para obtener este resultado, se utilizaron paquetes de programación dentro del software R como tosr, ggrepel, rebus, tidytext y lubridate, en donde se extrajo la bibliografía y se diseñó la aplicación de red de citas, tipos y características, así como todos los archivos que componen la red para facilitar la gestión de la información 26,27.
Seguidamente se cuantificaron tres indicadores bibliométricos: 1. Indegree, este indicador significa la cantidad de veces que han sido citadas o referenciadas por otros 27; 2. Outdegree, este son las veces que un nodo peculiar cita a otros o se considera como el número de interacciones que tiene cada documento 27; 3. Betweenness, este da a conocer el grado de intervención y centralización de cada componente dentro de la red 28, conociendo cuando el documento o artículo es referenciado y cuando cita a otros 29.
Como resultado final se obtiene una red de conocimiento en el campo integrada a través de artículos o documentos extraídos de bases de datos y referencias correspondientes, involucrando trabajos de diversas fuentes, no solo de ellas (Scopus y Wos), involucrando otras Bases de Datos y publicaciones científicas. El análisis de redes se conoce como "gráfico de cocitación", lo que facilita la visualización del diseño o la estructura de los dominios de conocimiento, lo que acelera la identificación de subdominios o tendencias de investigación 30,31. Se utilizó la herramienta Gephi para proporcionar un gráfico de redes de conocimiento en el campo de la investigación del biochar y su relación con metales 32.
Se utilizaron registros obtenidos de la web, se cuantificaron las métricas en el grado de las entradas, el grado de las salidas y de las intermediaciones, lo que permitió categorizar la investigación utilizando la metáfora de los árboles 33,34. A partir de esta analogía surgen tres categorías: Raíz (alta), literatura clásica o investigación que muestra una importancia teórica hegemónica dentro del campo de estudio, teniendo en cuenta las publicaciones que son citadas, pero no citadas por otros autores 27. Seguido del cuerpo principal (alta intermediación), hay artículos que son citados, pero también citados por otros 29, esta parte es un trabajo estructurado, entrelazado con la teoría básica clásica y la investigación actual. Finalmente, están las hojas (high out-degree), que se enfocan en artículos recientes y citan otros artículos 27, de igual forma muestran las tendencias actuales en el marco de investigación del campo, también conocidas como "perspectivas", que constituyen frentes de investigación emergentes. Esta técnica metodológica ha sido validada y utilizada en estudios previos 35-44.
Resultados y discusión
En esta sección se relacionan elementos bibliométricos de biochars y metales, los autores más relevantes en cuanto a producción científica, discriminación por países, producción e indexación de citas, y las revistas más importantes en el campo. Asimismo, se expresan redes y árboles de interconexión y, además, se presentan perspectivas regionales.
Producción científica
La Figura 1, muestra el modelo de producción de artículos científicos relacionados con temas de biochar y metales publicados en las siguientes bases de datos: WoS y Scopus, entre los años 2000 y 2021, lo que da como resultado 817 artículos representado con la línea de color rojo, esta muestra la cantidad de referencias únicas en las dos bases de datos, eliminando los registros duplicados. A partir de 2013 se puede observar cierto interés en esta área de investigación y un incremento en la publicación de artículos sobre estos dos temas, observándose un aumento considerable y significativo en los años posteriores. En el 2021, fue el año período de mayor producción, alcanzando los 197 artículos. Como se puede observar en la línea de tendencia, la comunidad científica tiene interés en el campo del conocimiento con una tasa de crecimiento anual del 38,37%. También se destaca un comportamiento similar en el número de publicaciones en la base de datos en los últimos 5 años. No se muestran años anteriores al 2010 ya que, no hay investigaciones de interés o relevantes en el área de estudio.
Al analizar la producción científica nacional, China encabeza ambas bases de datos, con 371 artículos publicados en Scopus y 335 artículos en WoS; la Tabla 2 muestra el impacto global de la producción académica por base de datos en las investigaciones asociadas al biochar y los metales. En la lista de 10 países con la mayor producción, se destaca el continente asiático con un 62,2%, América del Norte ocupa el segundo lugar con un 8,2 %, seguida de Europa (4,2 %) y Oceanía (2,2 %).
País | Wos | Scopus | Total | Porcentaje |
---|---|---|---|---|
China | 335 | 371 | 400 | 49,0% |
Usa | 42 | 29 | 45 | 5,5% |
Korea | 34 | 37 | 40 | 4,9% |
India | 25 | 26 | 31 | 3,8% |
Canada | 23 | 21 | 22 | 2,7% |
Iran | 23 | 19 | 22 | 2,7% |
Spain | 17 | 18 | 18 | 2,2% |
Australia | 16 | 17 | 18 | 2,2% |
Poland | 16 | 14 | 16 | 2,0% |
Pakistan | 11 | 14 | 15 | 1,8% |
En relación con los autores, en la Tabla 3, se muestra la lista de los autores más importantes, quienes son categorizados por el número de documentos publicados en sus respectivas bases de datos, además, se correlaciona su índice H (H-index), el cual se utiliza para describir la producción científica de los investigadores 45.
Autor | Total de Publicaciones | Wos | Scopus | ||||
---|---|---|---|---|---|---|---|
Publicaciones | Citaciones | Índice H | Publicaciones | Citaciones | Índice H | ||
Ok Yong Sik | 31 | 28 | 22504 | 0 | 30 | 44845 | 107 |
Tsang, Daniel C.W. | 18 | 16 | 14462 | 80 | 18 | 27340 | 87 |
Wang Yin | 17 | 14 | 1748 | 27 | 11 | 3289 | 34 |
Zhang, Zengqiang | 17 | 16 | 1754 | 52 | 14 | 9139 | 55 |
Kumar Awasthi, Mukesh | 10 | 10 | 1948 | 30 | 8 | 8083 | 48 |
Li, Ronghua | 10 | 9 | 6521 | 49 | 7 | 7333 | 47 |
Rinklebe, Joerg. | 9 | 9 | 8584 | 63 | 9 | 16059 | 65 |
Vithanage, Meththika Suharshini | 9 | 9 | 6963 | 44 | 9 | 10672 | 47 |
Wang, Hailong | 9 | 9 | 8200 | 56 | 8 | 13395 | 59 |
Zeng, Guangming | 9 | 9 | 67903 | 155 | 7 | 121045 | 165 |
La revista con el mayor número de publicaciones que se asocian al tema es Chemosphere (Q1), en el segundo puesto la sigue la revista Science Of The Total Environment (Q1) y Environmental Science And Pollution Research (Q2) en el tercer puesto, estás revistas se encuentran indexadas en las bases de datos y hacen parte del cuartil 1. Dentro de las 10 primeras y con más importancia se encuentran revistas de Holanda en el primer puesto, el Reino Unido ocupa el segundo lugar y Estados Unidos el tercer lugar (Tabla 4).
REVISTAS | WOS | SCOPUS | total | porcentaje | cuartil | sjr (2020) | h - index |
---|---|---|---|---|---|---|---|
Chemosphere | 55 | 49 | 56 | 6,85% | Q1 | 1,63 | 248 |
Science of the total environment | 52 | 47 | 52 | 6,36% | Q1 | 1,8 | 244 |
Environmental science and pollution research | 38 | 37 | 38 | 4,65% | Q2 | 0,85 | 113 |
Bioresource technology | 35 | 31 | 35 | 4,28% | Q1 | 2,49 | 294 |
Journal of hazardous materials | 26 | 24 | 26 | 3,18% | Q1 | 2,03 | 284 |
Journal of environmental management | 17 | 17 | 17 | 2,08% | Q1 | 1,44 | 179 |
Ecotoxicology and environmental safety | 15 | 15 | 15 | 1,84% | Q1 | 1,38 | 129 |
Water, air, and soil pollution | NA | 15 | 15 | 1,84% | Q2 | 0,56 | 111 |
Chemical engineering journal | 12 | 13 | 13 | 1,59% | Q1 | 2,53 | 223 |
Environmental pollution | 12 | 12 | 13 | 1,59% | Q1 | 2,14 | 227 |
En la Figura 2, se ilustran los cuatro elementos principales que forman parte del análisis bibliográfico, en el primer cuadro se ubica la red colaborativa de autor y se puede mostrar el trabajo conjunto de autores mencionados en diferentes grupos, como es el caso de Wang Y., Ok Y. y Zang J. Estos grupos reflejan la interacción entre los 10 investigadores más publicados sobre el tema analizado en las bases de datos Scopus y Wos. En la segunda columna se ubican las redes de co-citación de los autores, lo que ayuda a identificar a los autores más importantes o destacados en términos de conteo de citas 46. La co-citación entre los dos grupos de autores es más prominente, el grupo más grande relaciona a los autores Zhang, Wang, Chen, etc. El segundo grupo lo integra autores como Ahmad, Uchimiya, Jehmann, entre otros; siendo los primeros de la lista por el mayor número de citaciones en la red, esto se evidencia en el h-index (google citations), siendo los más autores más relevantes en el campo.
La red de cooperación entre países afirma la importancia de los países asiáticos, el primer grupo es la integración de países con mayor número de publicaciones: China, Canadá, Australia, etc.; el segundo grupo es Reino Unido, República Checa, España, etc.; Estos países cooperan en grupos y se encuentran en el Top 10 de artículos publicados en bases de datos Scopus y Wos. Finalmente, se ubica la red de coocurrencia de palabras, la cual muestra grupos de palabras compuestas; En la primera parte, las palabras en rojo son Biochars, metales pesados y absorción; El otro grupo de palabras en color azul, resalta el tratamiento de contaminantes y metales pesados.
Análisis de red
A través de este análisis, se pueden identificar los documentos más relevantes de la región, se usó la metáfora de un árbol científico para seleccionar documentos con las métricas más altas para su revisión y organización. diez clásicos (raíz), diez estructurales (tronco) y diez recientes (hoja). El algoritmo de agrupamiento propuesto por Blondel et al. 47, establece subcampos o áreas comunes de investigación. Se identificaron de esta forma cuatro grupos principales, los cuales se pueden apreciar en las hojas, Figura 3.
Para establecer inicialmente el tema de cada subregión (Cluster), se aplicó minería de textos, en particular el paquete WordCloud 48, que genera nubes de palabras a partir de palabras y títulos clave de artículos, compara documentos con mejor PageRank 49) por grupo. Asimismo, se seleccionan los diez más relevantes, haciendo uso del parámetro métrica el cual permite construir citas desde una visión cuantitativa de los documentos más destacados de un conjunto, apoyada en citas 50 51. A continuación, se analizaron el biocarbón, los metales y los metaloides.
Documentos clásicos (Raiz)
Los artículos de investigación asociados al árbol de Biochars y metales, y los artículos enraizados en esta revisión bibliográfica de grado son los más destacados, es decir, se agrupan los artículos clasificados como altamente citados, que muestran disposiciones clásicas y dominantes. Esta sección analiza 7 registros que se consideran dominantes como se describe anteriormente.
Los documentos encontrados en las bases de datos (WoS y Scopus) se clasificaron en dos grupos, en el primero se encuentran los autores que han realizado contribuciones importantes referente al biochar, absorción de contaminantes tóxicos, retención de metales y términos generales para tratamiento de suelos 4); (3); (52); (53. La segunda parte contiene autores evalúan porcentajes de remoción y eficiencia del biochar 1); (54); (9. Entre los investigadores principales sobresalen Luke Beesley y Uchimiya M., confirmando los resultados obtenidos en la red de cocitaciones y ratificando el protagonismo de estos autores en el campo de estudio.
La investigación con mayor impacto en el área de los Biochar y metales es “Biochar como absorbente para el manejo de contaminantes en suelo y agua: una revisión”4, en este artículo se evidencia el interés en la aplicación del Biochar en diversas áreas para ayudar a retener o inmovilizar metales y retener carbono, como alternativa para el mejoramiento de la fertilidad del suelo, la remediación de la contaminación y el reciclaje de subproductos/desechos agrícolas. En el año 2010, se publica un artículo llamado “Efectos de las enmiendas de biochar y compost de desechos verdes sobre la movilidad, biodisponibilidad y toxicidad de contaminantes orgánicos e inorgánicos en un suelo contaminado con múltiples elementos”, esta investigación presenta los altos niveles de elementos contaminantes tanto orgánicos como inorgánicos en áreas industriales, y como el biochar puede incidir en la remediación de estos suelos contaminados 52. Otros investigadores que realizan aportes considerables en el campo de estudio analizan la capacidad de absorción del biochar y la capacidad de retención de elementos como: arsénico (As), cadmio (Cd) y zinc (Zn) 1.
Documentos estructurales (Tronco)
Dentro de los documentos que hacen parte del tronco (estructurales) del árbol de Biochar y metales, se establece una tendencia en el desarrollo investigativo de corte aplicado, asociados a la identificación, biodisponibilidad 6, sostenibilidad y los impactos de utilizar biochar de plantas 2 entre ellas el Conocarpus 5; Por otro lado, se presentan estudios e investigaciones enfocadas en analizar la composición 55 del biochar, la capacidad de absorción y remediación de metales en suelos 55, entre ellos Cd, Cu, Pb, Zn (7), así como la asociación e interrelación de microorganismos como solución ecológica 56, para tratar terrenos contaminados 57.
Perspectivas (Hojas)
En la revisión realizada, se identificaron 4 líneas principales de investigación a través del algoritmo de clusterización, que se muestran y analizan a continuación. Figura 4.
Perspectiva 1. efectos en suelos contaminados
En esta perspectiva se integran investigaciones que se focalizan en el área de atención de las capacidades de retención y/o absorción de metales y sustancias tóxicas de diversos Biochars, conociendo posibles medios o métodos para la recuperación de los medios contaminados. De acuerdo con Wang Y et. al. 8, los biochars se deben diseñar de acuerdo con el objetivo deseado considerando las características del suelo, y recomienda aplicar el 3% de un biochar para la estabilización de los metales en el suelo, de igual manera se ha encontrado que al agregar un 5% mejora el estado nutricional de este 58.
Los resultados han llevado a evaluar la efectividad de biochars de diferentes compuestos en la remoción de metales en suelos contaminados, como es el caso de los residuos verdes, el cual tiene una eficiencia de remoción de 42,7% de Cd, 0,901% de Cu y 72,9% de Pb 3; En el caso del producto resultante de la combustión incompleta de la biomasa, se encontraron concentraciones de C (90,8%), el O (7,2%) y H (1,7%) 59. Por otro lado, se están trabajando asociaciones o mezclas para incrementar la eficiencia del tratamiento, entre estos la del cacahuete, soja, arroz y canola 60, biochar con compost 61, enmiendas de recuperación de suelos 62, nanosilices 63, o la de residuos de estiércol de pollo con materia verde que ha logrado retener 88,4% Cd, el 93,5% de Pb 3; de igual manera se han combinado con procesos de Fito extracción con la especie Amaranthus tricolor, alcanzando una eficiencia del 55% en suelos controlados 64.
Perspectiva 2. métodos de solución y absorciones
La experimentación con diferentes métodos para producir biochar más estables o eficientes es un tema que está generando diversos resultados particulares, en el caso de Shang J. 65, utiliza el método Brunauer Emmet Teller (BET) con residuos verdes para lograr concentraciones de C de un 44,98% a 9,37% y del Fe 39,51% a 5,67%; por otro lado se ha utilizado el método pirolítico a temperaturas de 200°C, 400°C, 600°C con residuos sólidos urbanos municipales 66, virutas 67, sauce 68, logran reducciones en la concentración de N y C 69. Se resaltan otras técnicas como la activación con vapor y ácido fosfórico para el caso de la cáscara de nuez 70) para suprimir iones metálicos reteniendo casi el 100% de estos, o la modificación de PH en la solución como agentes de aceleración en reacciones superficiales logrando la eliminación de 99,99% para Cr (VI) a pH 1, 99,86% para Pb (II) a pH 3 y 99,67% para Cd (II) a pH 5 71.
Perspectiva 3. lodos de aguas residuales
Los lodos depuradores contienen altas tasas de metales por lo cual no se usan con fines ambientales y/o agrícolas, sin embargo, los Biochars (BC) derivados de lodos alcanza recuperaciones entre el 80 - 100% 72, siendo necesario conocer el porcentaje de metales después de la licuefacción (80%), esto afecta la biodisponibilidad, los procesos de adsorción - desorción, la composición iónica del agua y la movilidad de los metales en el suelo 73. La eficiencia y calidad del Biochars (BC) varían según la pirólisis; Se conoció que a 300 °C el rendimiento es del 62,5% y a 400 °C es del 28,5% 74, por otro lado, al aplicar sustancias como el DTPA (ácido dietilentriaminopentaacético) en los BC y a una pirólisis adecuada, se extrae metales como Zn (82%); Pb (16%); Cu (43%); Cd (54%); Fe (6%) y Mn (34%) 75. Conociéndose las temperaturas adecuadas disminuye el contenido de material volátil del 27,4% al 5,5%, incrementa el de cenizas del 65,8% al 86,8% y de carbono fijo de 6,8% a 9,2% 76.
Considerando lo anterior, los BC derivados de lodos depuradores y por pirólisis, los convierte en un método propicio y eficiente en la retención de metales 77, y que al agregar aserrín de bambú para la co-pirólisis, disminuye el 16% en el contenido de cenizas y alrededor del 50% de metales en el lodo y en el biocarbón 78. Por otro lado, Los BC derivados de lodos teñidos de textiles a temperaturas entre 300°C y 700°C, retiene metales entre el 60,96% y el 80,85% 79. Igualmente, se conoce compuestos orgánicos en los aceites de pirólisis: bencenos, fenoles, nitrilos, ácidos orgánicos, entre otros; Al agregar 50% BC de mazorca de maíz disminuye el 37,5% al 19,8% (p/p) de Nitrilos, el 4,5% (p/p) de esteroides 80; Finalmente, los BC trata las aguas/aguas residuales reteniendo: 46% de metales, 39% de contaminantes orgánicos, 13% en otros nutrientes y 2% en otros contaminantes, esto se debe al área superficial específica, la estructura porosa y grupos funcionales superficiales del BC 81.
Perspectiva 4. aplicación de microorganismos en materia orgánica
En la investigación de Ahmad M. et al. 4 se presenta que la absorción de contaminantes orgánicos haciendo uso de biochars se beneficia más que los contaminantes inorgánicos, con una eficiencia de eliminación del 99,5% de fenantreno (biocarbón de tallo de soja), mientras que una solución acuosa elimina el 86,4% de Hg (II). Xu H. et. al 82) indica que al agregar un biochar se incrementa el pH del suelo Las altas concentraciones de microorganismos (Proteobacteria, Acidobacteria, Chloroflexi, entre otros), representan el 91%, la acidobacteria fue la más sensible al biocarbón disminuyendo el 17,8% al 6,1% con colza y del 17,2% al 5,9% sin colza.
Sin embargo Paz-Ferreiro et al. 83 presenta que la biomasa microbiana C disminuyó en el suelo tratado con lodos depurados (56%), y que el coeficiente metabólico (qCO2 ) fue menor en los suelos tratados con lodos depurados para el control del suelo (60%), por otro lado, el CO2 fue 1,5 veces mayor en lodo depurado que en el suelo de control, y la mineralización de N fue de 8,7 más alto y 12,6 más altos en comparación con el suelo de control.
En el estudio de XU N. et al. 84 un antes y después del medio recuperado con biocarbón, evaluando el cambio de la diversidad bacteriana, los cuales reducen el nitrógeno lixiviado total del orden del 18,8% agregando biochar al 2%, con biochar al 4% se reduce el nitrógeno lixiviado total en 19,5% y con un biochar al 8% se reduce el nitrógeno lixiviado en 20,2%; con respecto al nitrato lixiviado, este se reduce en 16,0% agregando Biochar al 2%, 16,7% agregando Biochar al 4% y 19,3% agregando Biochar al 8%, sin embargo la cantidad de microorganismos (Acidobacteria, Chloroflexi y Gemmatimonadetes) disminuye aplicando el biocarbón, por otro lado, se incrementa otros microorganismos (Proteobacteria ,Bacteroidetes y Actinobacteria aumentaron).
Con la investigación realizada por Chen Z. Et. Al. 85 se da a conocer que el biochar y agua tiene la capacidad de retener As(V) entre el 10 - 13 % y un 87 - 90%, Fe(III) 2 - 17% y un 83 - 88 % en condiciones abióticas y bióticas; También se puede identificar que al agregar el biochar transforman la comunidad microbiana del suelo, aumentando las bacterias reductoras (Geobacter, Anaeromyxobacter, Desulfosporosinus y Pedobacter) de As (V) y Fe (III).
Asimismo, Wang N. Et. Al. 86 da a conocer que los medios de recuperación con biochars incrementa con exceso ciertos microorganismos, de Clostridia del 44,5% al 51,4%, y de bacilos del 5,89% al 8,05%; Igualmente se incrementa el nivel de género, Clostridum del 22,7 % al 27,3%, Bacillus del 2,39% al 3,34%, Caloramator del 3,88% al 4,46%, Desulfitobacterium del 0,62% al 0,84%, Desulfosporosinus del 0,65% al 0,95% y Geobacter del 0,92% al 1,17%.
En la investigación de Prayogo et al. 87 también se conoce que un biochar generado al 2% disminuye liberación de CO2, reduciendo el 10% en la mineralización, y se ve el incremento del 29% en el análisis de ácidos grasos de fosfolípidos, y ciertos microorganismos como bacterias totales en un 28%, bacterias gramnegativas al 27% y actinobacterias del 62%.
De acuerdo con Gómez J. et al. 88 se analizaron distintos suelos con perfiles de ácidos grasos de fosfolípidos con variables del 88% en la dinámica temporal de estos perfiles, se analiza que al agregar el 20% del biochar cambian los perfiles de ácidos grasos de fosfolípidos totales en CO. Por lo anterior, se considera que la valoración sobre la reacción microbiana del suelo tiene un déficit del 77%, utilizando la dinámica temporal de los ácidos grasos de fosfolípidos.
Igualmente, una investigación de Li X. Et. Al. 89 diseña tres biochars con altas capacidades de retención, el de mayor contenido de cenizas tiene el 43,82%, la cual retiene el 92,78% de SiO2, el 33,18% de K2O, así como retención de otros minerales del 70,60%; Estos biocarbones contienen el 40% de grupos funcionales orgánicos hidroxilo y carboxilo, de igual manera cerca del 60% de coprecipitación o complejo en superficies minerales.
Por último, en el estudio de BASS A. et al. 90 se conoce que se incrementa los cationes de ciertas sustancias agregando el 27,5% de un biochar y del 24,7% de una mezcla de biochar/Compost, incrementando las tasas de mineralización de carbono y reformando la estructura microbiana.
Conclusiones
Esta investigación se llevó a cabo mediante un estudio metódico y bibliométrico en relación al tema - uso de “Biochars como medio para remover metales pesados de suelos y aguas”, por medio de un estudio de red. Los resultados se dan a conocer a través de la analogía del árbol para alcanzar una mejor visión en el desarrollo del tema. El centro del análisis está incluido los artículos que se sitúan en la “raíz”. El “tronco” está conformado con los artículos que moldearon y le dieron forma estructural al tema de biochars y metales. Finalmente, las investigaciones que se posicionan sobre las “hojas” brindan un apoyo a las cuatro perspectivas planteadas (Perspectiva 1: Efectos en suelos contaminados, Perspectiva 2: Métodos de solución y absorciones, Perspectiva 3: Lodos de aguas residuales y Perspectiva 4: Ampliación de microorganismo en materia orgánica).
Dentro de los beneficios más representativos, se observa que los biochars aportan de forma considerable en la disminución, eliminación y retención de metales y sustancias tóxicas, a través de distintos medios o sustancias que facilitan la recuperación de los medios (Suelo y Agua) que están contaminados por un uso inadecuado de residuos, donde se apoyan en los medios: Pirólisis, Microorganismos, materia orgánica, absorción y lodos depuradores.
Los artículos que se encontraron en la red están enfocados en estudios e investigaciones del continente asiático con el 62,2% y norteamericano con el 8,2%, donde las problemáticas por contaminación de metales pesados en los suelos y en los recursos hídricos son críticos. La aceptación de los proyectos sobre el uso de biochars como posible solución en la retención de metales, se ha evidenciado importantes aportes gracias al gran interés y protección sobre los medios para la recuperación de suelos y cuerpos de aguas ciertamente contaminados puesto como objetivo en sus programas. De igual forma, es notable observar que muy pocos investigadores y/o autores refutan estas investigaciones en Latinoamérica donde también se puede encontrar esta problemática. En Colombia sería interesante indagar a fondo estas soluciones mediante programas acertados, donde el uso de los Biochars esté enfocado como medio de recuperación y restauración de ecosistemas afectados, que a su vez se verá reflejado en un ambiente sano, mayores oportunidades de empleo, crecimiento personal, seguridad social y alimentaria entre otros; lo cual se resume en el mejoramiento de las condiciones de vida de las poblaciones que se ven directamente influenciadas.