SciELO - Scientific Electronic Library Online

 
vol.44 issue3Diet of Telmatobius atacamensis (Anura: Telmatobiidae): first contributions to the systematic knowledge of the trophic nicheArchitecture plant analysis for insectivorous birds in a Colombian Neotropical dry forest author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Caldasia

Print version ISSN 0366-5232On-line version ISSN 2357-3759

Caldasia vol.44 no.3 Bogotá Sep./Dec. 2022  Epub June 06, 2024

https://doi.org/10.15446/caldasia.v44n3.96508 

ECOLOGY

Variation in the population density of the Giant African Snail (Lissachatina fúlica) in the Neotropical region

Variación de la densidad poblacional del caracol gigante africano (Lissachatina fúlica) en la región Neotropical

1 Programa de Pós-graduação em Ecología, Universidade de Brasília, Brasil, angie.montoya317@gmail.com, rotidon@unb.br

2 Universidad del Valle, Departamento de Biología, Grupo de Investigación en Ecología Animal, Colombia, alan.giraldo@correounivalle.edu.co *


ABSTRACT

The Giant African Snail (Lissachatina fúlica) is one of the 100 world's worst invasive species and has been recorded in the Neotropical region since the 1980s. Temperature and precipitation variables affect snail population density; however, these relationships have not been investigated for L. fúlica on a regional scale. Here, we made the first description of variation in population density of L. fúlica in the Neotropical region using a literature search, descriptive statistics, and a Principal Component Analysis (PCA). We found 22 studies covering 36 localities in six countries. The mean snail density was 11.55 ± 28.32 ind/m2, with the lowest value recorded in Cuba (0.0002 ind/m2) and the highest value recorded in Venezuela (150 ind/m2). These values were recorded between 21 % to 93 % of Human Footprint, 710 mm to 4438 mm of Annual Precipitation, 13 °C to 27 °C, Mean Temperature of the Coldest Quarter, and 3 °C to 40 °C of Temperature Seasonality. The PCA suggested that low densities can occur in various environmental conditions, whereas medium and high densities seem to appear in more specific climatic combinations. In conclusion, increased densities of Lissachatina fúlica in the Neotropics seem to be influenced by climatic variations, especially the Mean Temperature of the Coldest Quarter and Annual Precipitation, supporting previous findings in the literature regarding the snail establishment. Future monitoring of this invasive species, performed at expanded spatial and temporal scales, may provide tools to establish a relationship between snail density values and impact.

Keywords: Achatina fúlica; Invasive snail; Invasion Biology; Population ecology

RESUMEN

El caracol gigante africano (Lissachatina fúlica) es una de las 100 peores especies exóticas invasoras del mundo, y se ha establecido en el Neotrópico desde los 80s. La temperatura y precipitación afectan la densidad poblacional en moluscos; sin embargo, esto no ha sido investigado en L. fúlica a escala regional. Aquí, elaboramos la primera descripción de la variación de la densidad poblacional de L. fúlica en la región Neotropical, mediante una búsqueda en la literatura, estadística descriptiva y un Análisis de Componentes Principales (ACP). Encontramos 22 estudios de 36 localidades en seis países. La densidad media fue de 11,55 ± 28,32 ind/m2, con el valor más bajo en Cuba (0,0002 ind/m2) y el valor más alto en Venezuela (150 ind/m2). Estos valores se registraron entre 21 % y 93 % de Huella Humana, 710 mm a 4438 mm de Precipitación Anual, 13 °C a 27 °C Temperatura Media del Trimestre más Frío, y 3 °C a 40 °C Estacionalidad de la Temperatura. El ACP indicó que las densidades bajas pueden ocurrir en cualquier condición evaluada, pero las medias y las altas estarían en combinaciones más específicas. En conclusión, la densidad poblacional de L. fúlica en el Neotrópico puede estar influenciada por variables climáticas, especialmente la Temperatura Media del Trimestre más Frio y la Precipitación Anual, corroborando lo encontrado en la literatura sobre el establecimiento del caracol. Monitoreos futuros de esta especie en diferentes escalas espaciales y temporales, pueden proveer herramientas para establecer la relación entre la densidad y el impacto de la especie.

Palabras clave: Achatina fúlica; Caracol invasor; Ecología de poblaciones; Invasión biológica

INTRODUCTION

The Giant African Snail, Lissachatina fúlica (Bowdich, 1822), is one of the 100 world's worst invasive species (Lowe et al. 2004, Thiengo et al. 2007). In the invaded areas, L. fúlica can cause impacts on health, agriculture, and the economy. In health, the snail can act as an intermediate host for nematode species of the genera Angiostrongylús and Aelúrostrongylús, which cause eosinophilic meningitis and abdominal angiostrongyliasis in humans, besides other diseases in domestic animals (Fischer et al. 2010). L. fúlica is recognized as a generalist herbivore that feeds on various cultivated plant species (Thiengo et al. 2007). Finally, the presence of L. fúlica entails an expense of the public herald for the potential consequences and control that must be carried out (Roda et al. 2018). Therefore, ecological research on L. fúlica is necessary to mitigate the negative impacts of its presence through the construction of comprehensive management plans.

In the Neotropics, L. fúlica was first recorded in the 1980s in Martinique and Brazil (Mead and Palaci 1992, Santana-Teles et al. 1997). By the beginning of the 21st century, it has already been recorded in Cuba (Vázquez and Sanchez 2014), Venezuela (Martínez-Escarbassiere et al. 2008), Colombia (De la Ossa-Lacayo et al. 2012), Ecuador (Goldyn et al. 2017) and Argentina (Gutierrez-Gregoric et al. 2011). After recording L. fúlica, some countries have established regulations to control and manage the snail, besides inciting research to provide baseline knowledge (MAVDT 2011). However, this control has been based on the manual collection and subsequent culling with chemical or physical means (Thiengo et al. 2007), which requires ecological knowledge of local populations. As the species is widely distributed in the Neotropics (Darrigran et al. 2020), a better understanding of the mollusk population dynamics in this region could help for enhancing control and management plans.

Density is one of the population parameters considered to assess whether an exotic population is established and the possible impact it produces. In L. fúlica, it is postulated that a population density higher than 10 ind/m2 is already a cause for concern as an established population (De la Ossa et al. 2017). This argument is because population density influences parameters related to fitness such as growth, fecundity, egg viability, and dispersal (Dickens et al. 2018). Nevertheless, the relationship between population density and the impact of an invasive population is not linear (Jackson et al. 2015) and can be affected by other ecological factors such as the trophic level (Bradley et al. 2019). We would also expect that density is also affected by temperature and precipitation; however, as far as we know, these relationships have not been investigated for L. fúlica on a regional scale. In heterogeneous environments, such as those found in the Neotropics, understanding the relationships between density and climate should contribute to modeling the link between density and impact.

Here, we estimated the amplitude of climatic and anthropic variables where the population density of L. fúlica was recorded in the Neotropical region. Through the association of density values to climatic and anthropic variables, we aim to answer the following questions: How much does the population density of L. fúlica varies in the Neotropical region? Which are the main climatic variables affecting the density of L. fúlica in the Neotropical Region? How do these climatic variables, as well as the human footprint, affect snail density? This study is the first descriptive approach on the variation of the population density of L. fulica in the Neotropics, focusing on the intervals of climate and anthropic intervention where the species was recorded. We expect that this work will provide subsidies for decision-making for managing the giant African snail in the countries of the region.

MATERIALS AND METHODS

A directional search with the keyword "Achatina fúlica" was performed in Google Scholar in English, Spanish and Portuguese. This keyword corresponds to the old name for the species, as the genus change from Achatina to Lissachatina was recently accepted (https://www.marinespecies.org/aphia.php?p=taxdetails&id=88l469). We downloaded all documents presenting numerical values of population density in neotropical countries. Because some documents did not show the exact collection coordinates, the geographic coordinates of the localities recorded in each document were approximated in Google Earth, using the center of the locality recorded. To access the anthropic intervention in the Neotropics, we used the global human footprint index, which is expressed as a percentage representing the relative human influence in each terrestrial bi-ome (WCS 2005). To access environmental parameters in the Neotropics, we used the nineteen current climate variables from WORLDCLIM 2.1 (https://www.worldclim.org/data/worldclim2l.html, resolution 2.5 arcminutes). We extracted the Human Footprint and climate values for locations with density records with the vegan (Oksanen et al. 2020) and raster (Hijmans 2021) packages in RStudio 4.1.0 (Supplementary material 1, Table S1).

Based on Albuquerque et al. (2009) and Vogler et al. (2013), we identified Human Footprint, Annual Precipitation, Mean Temperature of the Coldest Quarter, and Temperature Seasonality as the most relevant predictors for L. fúlica establishment. Then, we categorized each of these variables as "low" and "high", taking as reference their median value in the collection sites, and constructed boxplots using density values of each point as the response variable.

To explore the population density variation of L. fúlica in the Neotropical region, we performed a principal component analysis (PCA). Variation was represented in a Cartesian space defined by the human footprint and the 19 climatic variables. Density values were classified as low (<0.001 to 3.35 ind/m2), medium (4.03 to 9.2 ind/m2), and high (10.45 to 150 ind/m2), taking into account the median of the data and the suggestion of 10 ind/m2 in the study of De la Ossa et al. (2017). The PCA and the graphical representation were elaborated with the packages FactoMineR (et al. 2008) and factoextra (Kassambara and Mundt 2020) in RStudio 4.1.0.

RESULTS

In total, we found 22 papers estimating the population density of L. fúlica in the Neotropics. These papers record snail density in 36 localities covering six countries: Argentina, Brazil, Colombia, Ecuador, Venezuela, and Cuba, from 2004 to 2020 (Fig. 1a). For these records, the mean density was 11.55 ± 28.32 ind/m2 and the median was 4.03 ind/m2. The lowest and highest densities were reported in Cuba (Havana, 0.0002 ind/m2) and Venezuela (Andres Bello, 150 ind/m2). In most sites (80%) density values scored below 10 ind/m2 (Table 1).

Figure 1 Density of Lissachatina fúlica in the Neotropical Region. a. Map showing the sites where density data were recorded. b. Density variation in sites under high and low values of Human Footprint, Annual Precipitation, Mean Temperature of the Coldest Quarter and Temperature Seasonality; the categorization of the environmental variables into high and low was based on their median. 

Table 1 Population density values at localities in the Neotropical region. 

Regarding the relevant predictors for L. fúlica establishment suggested by the literature, we found density records in the following ranges: Human Footprint from 21% to 93%, Annual Precipitation between 710 mm to 4438 mm, Mean Temperature of the Coldest Quarter between 13 °C to 27 °C, and Seasonality of Temperature between 3 °C to 40 °C. In general, we found no density pattern between low or high values of these variables (Fig. 1b).

The first two components of the PCA explained 63.5% of the variance of the environmental data (Supplementary material 2, Table S2). Mean Temperature of the Coldest Quarter (bio11) and Mean Temperature of the Driest Quarter (bioç)) had the largest contributions to the first component. In contrast, Annual Precipitation (bio12) and Precipitation of the Wettest Month (bio13) had the largest contributions to the second component. Human Footprint was the least contributing variable for both components (Supplementary material 2, Table S3). The Cartesian space defined by PC1 and PC2 shows that sites presenting low snail densities are distributed across the two components, indicating that different climatic combinations can maintain L. fúlica populations. On the other hand, most sites presenting medium snail densities show positive values of the first component, whereas most sites presenting high densities show negative values of the second component. This pattern suggests that density increase can be influenced by specific temperature and precipitation ranges (Fig. 2).

Figure 2 Principal Component Analysis (PCA) with the values of Human Footprint and climatic variables of the localities with recorded population density in the Neotropical region. Each point represents a locality, and its shape represents the recorded density (Triangle <0.001 to 3.35 ind/m2, Square 4.03 to 9.2 ind/m2, Circle 10.45 to 150 ind/m2

DISCUSSION

In this study, we found a high variation in the population density of L. fúlica in six Neotropical countries. Low densities of the species can be maintained in an array of environmental conditions, but density increase seems to be influenced by the Mean Temperature of the Coldest Quarter (bio11) and Annual Precipitation (bio12). The possible influence of bioll on L. fúlica density seems to be associated with establishment (Vogler et al. 2013) and survival (Sharma and Dickens 2018). Annual Precipitation, in turn, may be related to physiological processes, like estivation (Rahman and Raut 2010), that influence population dynamics. However, the low number of localities with density records does not capture all the environmental conditions that could explain the variation in density of the invasive mollusk.

Our data did not show the clear effects of human intervention on snail population density. The human footprint did not contribute significantly to the principal components, and the highest population density (150 ind/m2) was recorded in a site presenting the lowest value of human footprint (21%) (Supplementary material 1). In general, disturbed areas provide unique habitat opportunities and potential refugia for invasive alien species (Cadotte et al. 2017) and may even promote adaptation (Borden and Flory 2021). What is interesting in the case of L. fúlica is its ability to maintain populations in low percentages of the human footprint, which would turn conservation units and rural areas of countries into refuges for the species (Fischer et al. 2010). Since L. fúlica can occur from low to high human intervention, we call attention to direct management strategies in rural human populations.

According to the latest distribution model of the species in South America (Vogler et al. 2013), localities with low temperatures and high seasonal variation are less suitable for L. fúlica. However, in our study the highest density values (150 - 107.6 ind/m2) were found in localities with 4 °C and 34 °C temperature seasonality (Supplementary material 1). It is, therefore, possible to postulate that after establishment, L. fúlica can maintain high densities in high seasonality. In Andrés Bello, a tropical locality presenting a very weak seasonal climate, the high snail density could be explained by resource availability (Martínez-Escarbassiere et al. 2008, Herrera et al. 2016). In the subtropical locality Puerto Iguazú, the high density could be explained by the sampling period: the collections were conducted in March, when temperatures around 31 °C and humidity around 70% (Gutiérrez-Gregoric et al. 2011) represent optimal conditions for L. fúlica. This difference demonstrates that temporal monitoring is necessary to identify the influence of climate and resource availability on the viability of populations.

In conclusion, the population density of Lissachatina fúlica in the Neotropical region would be more influenced by climatic variables than by the degree of anthropogenic intervention. In this study, we postulate the Mean Temperature of the Coldest Quarter (bio11) and Annual Precipitation (bio12) as key climate variables influencing snail density, supporting the results found by Albuquerque et al. (2009) and Vogler et al. (2013) regarding L. fúlica establishment. We call attention to the ability of the species to maintain low population densities over wide ranges of environmental variables. Since at high population densities, there is a greater perception of damage (Jackson et al. 2015), low-density localities are ignored when establishing control actions. In the future, a spatial and temporal expansion of local monitoring of this invasive species may provide sufficient tools to develop a relationship between density values and the impact produced by the species in the region.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Code 001.

LITERATURE CITED

Albuquerque FSD, Peso-Aguiar MC, Assunção-Albuquerque MJT. 2008. Distribution, feeding behavior and control strategies of the exotic land snail Achatina fúlica (Gastropoda: Pulmonata) in the northeast of Brazil. Braz. J. Biol. 68(4):837-842. doi: https://doi.org/10.1590/S1519-69842008000400020Links ]

Albuquerque FSD, Peso-Aguiar MC, Assunção-Albuquerque MJT, Gálvez L. 2009. Do climate variables and human density affect Achatina fúlica (Bowditch) (Gastropoda: Pulmonata) shell length, total weight and condition factor? Braz. J. Biol. 69(3):879-885. doi: https://doi.org/10.1590/S1519-69842009000400016Links ]

Avendaño JM, Linares EL. 2015. Morfometría del caracol gigante africano Achatina fúlica (Gastropoda: Achatinidae) en Colombia. UNED Research Journal/Cuadernos de Investigación UNED. 7(2):287-293. [ Links ]

Borden JB, Flory SL. 2021. Urban evolution of invasive species. Front. Ecol. Environ. 19(3):184-191. doi: https://doi.org/10.1002/fee.2295Links ]

Bradley BA, Laginhas BB, Whitlock R, Allen JM, Bates AE, Bernatchez G, Diez JM, Early R, Lenoir J, Vila M, Sorte CJ. 2019. Disentangling the abundance-impact relationship for invasive species. PNAS. 116(20):9919-9924. doi: https://doi.org/10.1073/pnas.1818081116Links ]

Cadotte MW, Yasui SLE, Livingstone S, MacIvor JS. 2017. Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol. Invasions. 19(12):3489-3503. doi: https://doi.org/10.1007/s10530-017-1586-yLinks ]

Cano JS. 2018. Apoyo técnico a la Universidad Cooperativa de Colombia en la determinación del riesgo, modelación cartográfica y distribución biogeográfica del caracol africano en el Departamento del Tolima. [Tesis]. [Tolima]: Universidad Cooperativa de Colombia. [ Links ]

Cuasapaz-Sarabia J, Salas JA. 2019. Área de vida de la especie invasora Achatina fúlica (Gastropoda: Achatinidae) en un área de conservación de bosque seco ecuatoriano. Rev. Peru. Biol. 26(1):41-48. doi: https://doi.org/10.15381/rpb.v26i1.14628Links ]

Darrigran G, Agudo-Padrón I, Baez P, Belz C, Cardoso F, Carranza A, Collado G, Correoso M, Cuezzo MG, Fabres A, Gutiérrez-Gregoriz DE, Letelier S, Ludwig S, Mansur MC, Pastorino G, Pen-chaszadeh P, Peralta C, Rebolledo A, Rumi A, Santos S, Thiengo S, Vidigal T, Damborenea, C. 2020. Non-native mollusks throughout South America: emergent patterns in an understudied continent. Biol. Invasions. 22(3)853-871. doi: https://doi.org/10.1007/s10530-019-02178-4Links ]

de Almeida MN. 2018. Diagnóstico e monitoramento ambiental de uma população do caracol africano [Achatina fúlica (bowdich, 1822)] em Santo Antônio de Pádua/RJ. Acta Scientiae et Technicae. 6(2). [ Links ]

De La Ossa-Lacayo A, De La Ossa J, Lasso CA. 2012. Registro del caracol africano gigante Achatina fúlica (Bowdich 1822)(Mollusca: Gastropoda-Achatinidae) en Sincelejo, costa Caribe de Colombia. Biota Colomb. 13(2):247-252. [ Links ]

De La Ossa-Lacayo A, De La Ossa J. 2014. Caracol africano gigante Achatina fúlica Bowdich 1822 (Mollusca: Gastropoda-achatinidae) en zona urbana de Sincelejo Y Sampués, Sucre, Colombia. Rev. Colombiana Cienc. Anim. 6(2):299-304. doi: https://doi.org/10.24188/recia.v6.n2.2014.432Links ]

De La Ossa-Lacayo A, Castro-Carmona J, Monroy-Pineda M. 2017. Ampliación de la presencia del caracol africano gigante Acathina fúlica (Bowdich 1822) (Mollusca: Gastropoda-Achatinidae) en la zona norte del departamento de Sucre, Colombia. Rev. Colombiana. Cienc. Anim. 9(Supl 2):317-322. doi: https://doi.org/10.24188/recia.v9.n2.2017.614Links ]

De La Ossa J, De la Ossa-Lacayo A, Carmona JC, Pineda MM, Mario JF. 2017. Incremento poblacional de Achatina Fúlica Bowdich 1822 (mollusca: gastropoda-achatinidae) en una zona urbana de Sincelejo, Sucre, Colombia. ACCB. 29:21-29. [ Links ]

Dickens KL, Capinera JL, Smith TR. 2018. Effects of density and food deprivation on growth, reproduction, and survival of Lissachatina fúlica. Amer. Malac. Bull. 36(1):57-62. doi: https://doi.org/10.4003/006.036.0115Links ]

Fischer ML, Colley E, Amadigi S, Simião MS. 2010. Ecologia de Achatina fúlica. O caracol gigante africano Achatina fúlica no Brasil. Curitiba: Editora Champagnat. [ Links ]

Giraldo A, Bolívar-García W, Cantera J, Garcés-Restrepo M, Colorado AG, Gómez M, Patiño-Montoya A, Garzón C. 2017. Aspectos generales de la historia natural del caracol gigante africano (Achatinafúlica Bowdich, 1822) en el Valle del Cauca. INNOVA-CIENCIA 5(1 S1). doi: https://doi.org/10.15649/2346075X.449Links ]

Goldyn B, Kaczmarek L, Roszkowska M, Guayasamín PR, Ksiqzkiewicz-Parulska Z, Cerda H. 2017. Urban ecology of invasive giant African snail Achatina fúlica (Férussac) (Gastropoda: Achatinidae) on its first recorded sites in the Ecuadorian Amazon. Amer. Malac. Bull. 35(1):59-65. doi: https://doi.org/10.4003/006.035.0108Links ]

Gutiérrez-Gregoric D, Núñez V, Vogler R, Rumi A. 2011. Invasion of the Argentinean Paranense rainforest by the giant African snail Achatina fúlica. Amer. Malac. Bull. 29(1/2):135-138. doi: https://doi.org/10.4003/006.029.0205Links ]

Gutiérrez-Gregoric DE, Beltramino AA, Vogler RE, Rumi A. 2013. Expansión del rango de distribución de Achatina fúlica Bowdich, 1822 (Gastropoda) en la Argentina y su concordancia con modelos predictivos. Amici. Molluscarum. 21(1):17-21. [ Links ]

Herrera A, Al Troudy M, Castillo-Gagliardi D, Chipia J, Castillo-Trujillo D. 2016. African snail: An exotic animal and dangerous plague for the health of the inhabitants of the municipality Andrés Bello. Revista del Grupo de Investigaciones en Comunidad y Salud 1(3):3-17. [ Links ]

Hijmans RJ. 2021. raster: Geographic Data Analysis and Modeling. R package version 3:4-13. [ Links ]

Jackson MC, Ruiz-Navarro A, Britton JR. 2015. Population density modifies the ecological impacts of invasive species. Oikos 124(7):880-887. doi: https://doi.org/10.1111/oik.01661Links ]

Kassambara A, Mundt F. c2020. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. [Revisada en: 05 May 2020] [Revisada en: 05 May 2020] https://CRAN.R-project.org/package=factoextraLinks ]

Lê S, Josse J, Husson F. 2008. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Soft. 25(1):1-18. doi: https://doi.org/10.18637/jss.v025.i01Links ]

Lima MSD, Guilherme E. 2018. Diagnosis, presence of endoparasites, and local knowledge on the infestation of the exotic giant African snail (gastropoda: pulmonata: achatinidae), in the urban zone of Rio Branco, Acre, Brazil. Biota Neotrop. 18(3):2017-0503. doi: https://doi.org/10.1590/1676-0611-BN-2017-0503Links ]

Lowe S, Browne M, Boudjelas S, De Poorter M. 2004. 100 de las Especies Exóticas Invasoras más dañinas del mundo. Una selección del Global Invasive Species Database. Auckland, Nueva Zelanda: Grupo Especialista de Especies Invasoras (GEEI). [ Links ]

Martínez-Escarbassiere R, Martínez EO, Castillo O, Ruiz L. 2008. Distribución geográfica de Achatina (Lissachatina) fúlica (Bowdich, 1882) (Gastropoda-Stylommatophora-Achatinidae) en Venezuela. Memoria de la Fundación La Salle de Ciencias Naturales 169:93-106. [ Links ]

MAVDT. 2011. Resolución Número 654 de abril 7 2011. "Por el cual se corrige la Resolución No. 0848 del 23 de mayo de 2008 y se adoptan las medidas que deben seguir las autoridades ambientales, para la prevención, control y manejo de la especie Caracol Gigante Africano (Achatina fúlica)". Colombia: MADTV. [ Links ]

Mead AR, Palaci R. 1992. Two giant African land snail species spread to Martinique, French West Indies. The Veliger 35(1):74-77 [ Links ]

Miranda MS, Fontenelle, JH, Pecora IL. 2015. Population structure of a native and an alien species of snail in an urban area of the Atlantic Rainforest. J. Nat. Hist. 49:19-35. doi: https://doi.org/10.1080/00222933.2014.930756Links ]

Oliveira JC, Corrêa KJG, Vasconcelos HCG. 2013. Ocorrência de Achatina fúlica (Mollusca: Pulmonata: Achatinidae) em três bairros da cidade de Santana, Amapá. Biota Amazônia 3(1):9-12. [ Links ]

Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McG-linn D, Minchin PR, O'Hara RB, Simpson G, Solymos P, Stevens M, Szoecs E, Wagner H. c2020. vegan: Community Ecology Package. Rpackage version 2.5-7. https://CRAN.R-project.org/package=veganLinks ]

Rahman MS, Raut SK. 2010. Factors inducing aestivation of the giant African land snail Achatina fúlica Bowdich (Gastropoda: Achatinidae). Proc. Zool. Soc. 63:45-52. doi: https://doi.org/10.1007/s12595-010-0006-4Links ]

Roda A, Yong Cong M, Donner B, Dickens K, Howe A, Sharma S, Smith T. 2018. Designing a trapping strategy to aid Giant African Snail (Lissachatina fúlica) eradication programs. PloS One. 13(9):e0203572. doi: https://doi.org/10.1371/journal.pone.0203572Links ]

Santana D, Batalla JF. 2018. Estudo da biologia e ecologia do gastrópode Achatina fúlica Bowdich, 1822 (MOLLUSCA, GASTROPODA) na cidade de Caraguatatuba, Litoral Norte do Estado de São Paulo. Unisanta BioScience 7(4):286-296. [ Links ]

Santana-Teles HM, Faria Vaz J, Fontes LR, Domingos MDF. 1997. Registro de Achatina fúlica Bowdich, 1822 (Mollusca, Gastropoda) no Brasil: caracol hospedeiro intermediário da angiostrongilíase. Rev. Saude Publica 31:310-312. doi: https://doi.org/10.1590/S0034-89101997000300014Links ]

Sharma S, Dickens K. 2018. Effect of temperature and egg laying depths on giant African land snail (Gastropoda: Achatinidae) viability. Fla. Entomol. 101(1):150-151. doi: https://doi.org/10.1653/024.101.0130Links ]

Simião MS, Fischer ML. 2004. Estimativa e inferencias do método de controle do molusco exótico Achatina fúlica Bowdich 1822 (Stylommatophora; Achatinidae) em Pontal do Paraná, litoral do Estado do Paraná. Cuad. Biodivers 4(2):74-83. [ Links ]

Thiengo SC, Faraco FA, Salgado NC, Cowie RH, Fernandez MA. 2007. Rapid spread of an invasive snail in South America: the giant African snail, Achatina fúlica, in Brasil. Biol. Invasions 9(6):693-702. doi: https://doi.org/10.1007/s10530-006-9069-6Links ]

Vázquez AA, Sánchez J. 2014. First record of the invasive land snail Achatina (Lissachatina) fúlica (Bowdich, 1822) (Gastropoda: Achatinidae), vector of Angiostrongylús cantonensis (Nematoda: Angiostrongylidae), in Havana, Cuba. Molluscan. Res. 35(2):139-142. doi: http://dx.doi.org/10.1080/13235818.2014.977837Links ]

Villavicencio-Abril Á, Ulloa-Cortázar S, Guamán-Guamán R, Romero-Salguero J, Alvarez-Tuala J, Nogales-Delgado M, Zambrano-Mejía C, Cunalata-Martínes M. 2020. Parámetros morfométricos de moluscos Lissachatina fúlica Bowdich, 1822 (Mollusca, Gastropoda) recolectados en fincas de la parroquia Luz de América, Santo Domingo de Los Tsáchilas, Ecuador. Neotrop. Helminthol. 14(2):161-173. doi: https://doi.org/10.24039/rnh2020142752Links ]

Vogler RE, Beltramino AA, Sede MM, Gutierrez-Gregoric DE, Núñez V, Rumi A. 2013. The giant African snail, Achatina fúlica (Gastropoda: Achatinidae): Using bioclimatic models to identify South American areas susceptible to invasion. Amer. Malac. Bull. 31(1):39-51. doi: http://dx.doi.org/10.4003/006.031.0115Links ]

[WCS] Wildlife Conservation Society - and Center for International Earth Science Information Network - CIESIN - Columbia University. 2005. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). [ Links ]

Citación: Patiño-Montoya A, Giraldo A, Tidon R. 2022. Variation in the population density of the Giant African Snail (Lissachatina fúlica) in the Neotropical region. Caldasia 44(3):627-635. doi: https://doi.org/10.15446/caldasia.v44n3.96508

PARTICIPATION OF AUTHORS APM Conceived ideas, data analysis and writing; AG data analysis and writing; RT data analysis and writing.

Received: June 24, 2021; Accepted: December 13, 2021; Published: January 06, 2022

*Correspondence author

CONFLICT OF INTEREST

The authors have no relevant financial or nonfinancial interest to disclose.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License