SciELO - Scientific Electronic Library Online

 
vol.45 issue1Evaluation of the Mean Control Chart Under a Bayesian ApproachFinite Population Mixed Models for Pretest-Posttest Designs with Response Errors author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.45 no.1 Bogotá Jan./June 2022  Epub Jan 17, 2023

https://doi.org/10.15446/rce.v45n1.92037 

Artículos originales de investigación

Wavelet Shrinkage Generalized Bayes Estimation for Multivariate Normal Distribution Mean Vectors with unknown Covariance Matrix under Balanced-LINEX Loss

Contracción de la ondícula Estimación de Bayes generalizada para vectores medios de distribución normal multivariante con matriz de covarianza desconocida con pérdida de LINEX equilibrada

HAMID KARAMIKABIR1  a 

MAHMUD AFSHARI1  b 

1 DEPARTMENT OF STATISTICS, FACULTY OF INTELLIGENT SYSTEMS ENGINEERING AND DATA SCIENCE, PERSIAN GULF UNIVERSITY, BUSHEHR, IRAN


Abstract

In this paper, the generalized Bayes estimator of mean vector parameter for multivariate normal distribution with Unknown mean vector and covariance matrix is considered. This estimation is performed under the balanced-LINEX error loss function. The generalized Bayes estimator by using wavelet transformation is investigated. We also prove admissibility and minimaxity of shrinkage estimator and we present the simulation study and real data set for test validity of new estimator.

Key words: admissibility; generalized bayes estimator; balanced-linex loss; minimaxity; multivariate normal distribution; soft wavelet shrinkage estimator

Resumen

En este trabajo, se considera el estimador de Bayes generalizado del parámetro de vector medio para distribución normal multivariante con vector de media desconocido y matriz de covarianza. Esta estimación se realiza bajo la función de pérdida de error LINEX balanceada. Se investiga el estimador de Bayes generalizado mediante la transformación de ondículas. También probamos la admisibilidad y minimaxidad del estimador de contracción y presentamos el estudio de simulación y el conjunto de datos reales para comprobar la validez de la prueba del nuevo estimador.

Palabras clave: admisibilidad; estimador de Bayes generalizado; estimador de contracción de ondas suaves; distribución normal multivariante; minimaxidad; pérdida de LINEX equilibrada

Full text available only in PDF format

References

Cao, M. X. & He, D. (2017), 'Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function', Journal of Multivariate Analysis 153, 246-254. [ Links ]

Donoho, D. L. & Johnstone, I. M. (1994), 'Ideal spatial adaptation by wavelet shrinkage', Biometrika 81, 425-455. [ Links ]

Fourdrinier, D. & Strawderman, W. E. (2015), 'Robust minimax stein estimation under invariant data-based loss for spherically and elliptically symmetric distributions', Metrika 78(4), 461-484. [ Links ]

Guo, C., Ma, Y., Yang, B., S., J. C. & Kaul, M. (2012), 'EcoMark: Evaluating models of vehicular environmental impact', SIGSPATIAL/GIS pp. 269-278. [ Links ]

Huang, S. Y. (2002), 'On a Bayesian aspect for soft wavelet shrinkage estimation under an asymmetric linex loss', Statistics and Probability Letters 56, 171-175. [ Links ]

Jiang, W. & Zhang, C. H. (2009), 'General maximum likelihood empirical Bayes estimation of normal means', The Annals of Statistics 37(4), 1647-1684. [ Links ]

Joly, E. Lugosi, G. & Oliveira, R. I. (2017), 'On the estimation of the mean of a random vector', Electronic Journal of Statistics 11, 440-451. [ Links ]

Jozani, J. M., Leblanc, A. & Marchand, E. (2014), 'On continuous distribution functions, minimax and best invariant estimators, and integrated balanced loss functions', Canadian Journal of Statistics 42, 470-486. [ Links ]

Jozani, M. J., Marchand, É. & Parsian, A. (2006), 'On estimation with weighted balanced-type loss function', Statistics and Probability Letters 76, 733-780. [ Links ]

Jozani, M. J., Marchand, É. & Parsian, A. (2012), 'Bayesian and Robust Bayesian analysis under a general class of balanced loss functions', Statistical Papers 53, 51-60. [ Links ]

Karamikabir, H. & Afshari, M. (2019), 'Wavelet Shrinkage Generalized Bayes Estimation for Elliptical Distribution Parameters under LINEX Loss', International Journal of Wavelets, Multiresolution and Information Processing 14(1), 1950009. [ Links ]

Karamikabir, H. & Afshari, M. (2020), 'Generalized Bayesian Shrinkage and Wavelet Estimation of Location Parameter for Spherical Distribution under Balance-type Loss: Minimaxity and Admissibility,', Journal of Multivariate Analysis 177(1), 104583. [ Links ]

Karamikabir, H. & Afshari, M. (2021), 'New wavelet SURE thresholds of elliptical distributions under the balance loss', Statistica Sinica 31(4), 1829-1852. [ Links ]

Karamikabir, H. Afshari, M. & Arashi, M. (2018), 'Shrinkage estimation of non-negative mean vector with unknown covariance under balance loss', Journal of Inequalities and Applications 2018, 331. [ Links ]

Karamikabir, H., Afshari, M. & Lak, F. (2020), 'Wavelet threshold based on Stein's unbiased risk estimators of restricted location parameter in multivariate normal', Journal of Applied Statistics 48(10), 1712-1729. [ Links ]

Marchand, E. & Strawderman, W. E. (2020), 'On shrinkage estimation for balanced loss functions', Journal of Multivariate Analysis 175, 104558. [ Links ]

Pal, N., Sinha, B. K., Chaudhuri, G. & Chang, C. H. (2007), 'Estimation Of A Multivariate Normal Mean Vector And Local Improvements', Statistics 26(1), 117. [ Links ]

Rencher, A. C. & Christensen, W. F. (2012), Methods of Multivariate Analysis, third edition edn, John Wiley & Sons. [ Links ]

Rudin, W. (1976), Principle of Mathematical Analysis, MacGraw-Hill. [ Links ]

Torehzadeh, S. & Arashi, M. (2014), 'A note on shrinkage wavelet estimation in bayesian analysis', Statistics and Probability Letters 84, 231-234. [ Links ]

Tsukuma, H. & Kubokawa, T. (2015), 'Estimation of the mean vector in a singular multivariate normal distribution', Journal of Multivariate Analysis 140(4), 245-258. [ Links ]

Vidakovic, B. (2009), Statistical Modelling by Wavelets, John Wiley and Sons. [ Links ]

Zellner, A. (2009), Bayesian and non-bayesian estimation using balanced loss functions, in J. O. Berger & S. S. Gupta, eds, 'Statistical decision theory and related topics V', Springer, New York. [ Links ]

Zinodiny, S., Rezaei, S. & Nadarajah, S. (2017), 'Bayes minimax estimation of the mean matrix of matrix-variate normal distribution under balanced loss function', Statistics and Probability Letters 125, 110-120. [ Links ]

Received: December 2020; Accepted: November 2021

aPh.D. E-mail: h_karamikabir@pgu.ac.ir

bPh.D. E-mail: afshar@pgu.ac.ir

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License