Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Integración
Print version ISSN 0120-419X
Integración - UIS vol.34 no.1 Bucaramanga Jan,/June 2016
https://doi.org/10.18273/revint.v34n1-2016002
DOI: http://dx.doi.org/10.18273/revint.v34n1-2016002
Peirce quincuncial projection
LEONARDO SOLANILLA*, ARNOLD OOSTRA, JUAN PABLO YÁÑEZ
Universidad del Tolima, Departamento de Matemáticas y Estadística, Ibagué, Colombia.
Abstract. We present the essential theoretical basis and prove concrete practical formulas to compute the image of a point on the terrestrial sphere under Peirce quincuncial projection. We also develop a numerical method to implement such formulas in a digital computer and illustrate this method with examples. Then, we briefly discuss the criticism of Pierpont on the correctness of Peirce's formula for the projection. Finally, we draw some conclusions regarding the generalization of Peirce's original idea by means of Schwarz- Christoffel transformations.
Keywords: Peirce quincuncial projection, elliptic functions, geographic maps, numerical conformal mapping, tessellations.
MSC2010: 30C30, 65E05, 01A55.
Proyección quincuncial de Peirce
Resumen. Presentamos los fundamentos teóricos esenciales y demostramos fórmulas concretas para calcular de manera práctica la imagen de un punto en la esfera terrestre bajo la proyección quincuncial de Peirce. Desarrollamos también un método numérico para implementar dicha proyección en un computador digital, el cual ilustramos con ejemplos. Luego discutimos brevemente las objeciones de Pierpont sobre la validez de la fórmula de Peirce. Por último, esbozamos algunas conclusiones sobre la generalización de la idea de Peirce por medio de transformaciones de Schwarz-Christoffel.
Palabras clave: Proyección quincuncial de Peirce, funciones elípticas, cartas geográficas, métodos numéricos, aplicaciones conformes, teselados.
Texto Completo disponible en PDF
References
[1] "Adams hemisphere-in-a-square projection", https://en.wikipedia.org/wiki/Adams_hemisphere-in-a-square_projection, [accessed 14 June 2015] [ Links ].
[2] Bellacchi G., Introduzione storica alla teoria delle funzioni ellittiche, G. Barbèra, Firenze, 1894. [ Links ]
[3] Bergonio P.P., "Schwarz-Christoffel Transformations", Thesis (Master), The University of Georgia, Athens, 2007, 66 p. [ Links ]
[4] Durège H., Theorie der elliptischen Funktionen, Leipzig, Druck und Verlag von B.G. Teubner, 1861. [ Links ]
[5] Frischauf I., "Bemerkungen zu C.S. Peirce Quincuncial Projection", Amer. J. Math. 19 (1897), No. 4, 381-382. [ Links ]
[6] "Guyou hemisphere-in-a-square projection", https://en.wikipedia.org/wiki/Guyou_hemisphere-in-a-square_projection, [accessed 14 June 2015] [ Links ].
[7] Jacobi C.G.J., Fundamenta nova theoriae functionum ellipticarum, Regiomonti (Königsberg), Borntræger, 1829. [ Links ]
[8] Lee L.P., "Some Conformal Projections Based on Elliptic Functions", Geographical Review 55 (1965), No. 4, 563-580. [ Links ]
[9] Liouville M.J., "Leçons sur les fonctions doublement périodiques faites en 1847 par M.J. Liouville", J. Reine Angew. Math. 88 (1880), 277-310. [ Links ]
[10] Peirce C.S., "A Quincuncial Projection of the Sphere", Amer. J. Math. 2 (1879), No. 4, 394-396. [ Links ]
[11] Pierpont J., "Note on C.S. Peirce's Paper on 'A Quincuncial Projection of the Sphere' ", Amer. J. Math. 18 (1896), No. 2, 145-152. [ Links ]
[12] Richelot F.J., "Darstellung einer beliebigen gegebenen Größe durch sin am(u + w, k)", J. Reine Angew. Math. 45 (1853), 225-232. [ Links ]
[13] Solanilla L., Las transformaciones elípticas de Jacobi, Sello Editorial Universidad del Tolima, Ibagué, 2014. [ Links ]
[14] Solanilla L., Tamayo A.C. & Pareja G., Integrales elípticas con notas históricas, Sello Editorial Universidad de Medellín, Medellín, 2010. [ Links ]
*Email:leonsolc@ut.edu.co
Received: 24 September 2015, Accepted: 27 January 2016.
To cite this article: L. Solanilla, A. Oostra, J.P. Yáñez, Peirce quincuncial projection, Rev. Integr. Temas Mat. 34 (2016), No. 1, 23-38.