SciELO - Scientific Electronic Library Online

 
vol.34 issue1Construction and coupling of frames in Hilbert spaces with W-metricsIntroduction to the midpoint function in continua author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Integración

Print version ISSN 0120-419X

Integración - UIS vol.34 no.1 Bucaramanga Jan,/June 2016

https://doi.org/10.18273/revint.v34n1-2016006 

DOI: http://dx.doi.org/10.18273/revint.v34n1-2016006

Convergencia débil de una sucesión de grafos
aleatorios radiales de Bernoulli

LEON A. VALENCIA*, EDWIN ZARRAZOLA,
YEISON RAMÍREZ

Universidad de Antioquia, Instituto de Matemáticas, Medellín, Colombia.


Resumen. En este artículo se introduce una colección de trayectorias aleatorias radiales coalescentes definidas sobre una región del plano, y se probará que, en una escala difusiva, dicha colección converge en distribución, mediante homeomorfismo, a una restricción de la Red Browniana.

Palabras clave: Convergencia débil, escala difusiva, red browniana.
MSC2010: 60G07, 60G50, 60G55.


Weak convergence of a sequence of Bernoulli
radial random graphs

Abstract. This article introduce a collection of coalescing random paths defined on a radial plane region. It will proved that, in a diffusive scale, this collection converges in distribution, via homeomorphism, to a restriction of Brownian Web.

Keywords: Weak convergence, diffusive scale, brownian web.


Texto Completo disponible en PDF


Referencias

[1] Arratia R., "Coalescing Brownian motions and the voter model on ℤ", Unpublished partial manuscript (circa 1981).         [ Links ]

[2] Baccelli F. and Bordenave C., "The radial spanning tree of a Poisson point process", Ann. Appl. Probab. 17 (2007), No. 1, 305-359.         [ Links ]

[3] Coletti C.F, Fontes L.R.G. and Dias E.S., "Scaling limit for a drainage network model", J. Appl. Probab. 46 (2009), No. 4, 1184-1197.         [ Links ]

[4] Coletti C. and Valencia L.A., "The Radial Brownian Web", arxiv.org/abs/1310.6929v1 (2013).         [ Links ]

[5] Coletti C. and Valle G., "Convergence to the Brownian Web for a generalization of the drainage network model", Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), No. 3, 899- 919.         [ Links ]

[6] Estrin D., Govindan R. and Heidemann J., "Next Century Challenges: Scalable Coordination in Sensor Networks", Proceedings of ACM Mobicom, Seatle, USA, 263-270, 1999.         [ Links ]

[7] Ferrari P.A., Fontes L.R.G. and Wu X.Y., "Two-dimensional Poisson trees converge to the Brownian web", Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), No. 5, 851-858.         [ Links ]

[8] Fontes L.R.G., Isopi M., Newman C.M. and Ravishankar K., "The Brownian web: characterization and convergence", Ann. Probab. 32 (2004), No. 4, 2857-2883.         [ Links ]

[9] Fontes L.R.G., Valencia L.A. and Valle G., "Scaling limit of the radial Poissonian web", Electron. J. Probab. 20 (2015), article 31, 1-40.         [ Links ]

[10] Newman C.M., Ravishankar K. and Sun R., "Convergence of coalescing nonsimple random walks to the Brownian web", Electron. J. Probab. 10 (2005), No. 2, 21-60.         [ Links ]

[11] Tóth B. and Werner W., "The true self-repelling motion", Probab. Theory Related Fields 111 (1998), No. 3, 375-452.         [ Links ]

[12] Valencia L.A., "A Teia Browniana Radial", Thesis (Ph.D), IME-USP, São Paulo, 2012, 83 p.         [ Links ]


*E-mail: lalexander.valencia@udea.edu.co.
Recibido: 03 de noviembre de 2015, Aceptado: 08 de marzo de 2016.
Para citar este artículo: L.A. Valencia, E. Zarrazola, Y. Ramírez, Convergencia débil de una sucesión de grafos aleatorios radiales de Bernoulli, Rev. Integr. Temas Mat. 34 (2016), No. 1, 95-108.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License