SciELO - Scientific Electronic Library Online

 
vol.37 issue1Methodology for conducting a diagnosis of the management of environmental indicators in the Cuban public administrationSoil block stabilized in small format and technology of placement in work, in housing of social interest author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Ingeniería y Desarrollo

Print version ISSN 0122-3461On-line version ISSN 2145-9371

Abstract

GALLO RAMIREZ, Juan Pablo  and  OSSA OROZCO, Claudia Patricia. Fabrication and characterization of silver nanoparticles with potential use in the treatment of skin cancer. Ing. Desarro. [online]. 2019, vol.37, n.1, pp.88-104. ISSN 0122-3461.  https://doi.org/10.14482/inde.37.1.6201.

Carcinoma-like skin cancer is the world’s most frequently diagnosed pathology. Its conventional treatments are classified according to the type of skin cancer that the patient presents and its location, and include procedures such as excision with margins evaluation, radiotherapy, curettage and electro dissection, cryosurgery, surgery Mohs micrograph, photodynamic therapy, topical 5-fluorouracil, topical Imiquimod therapy and laser with carbon dioxide. Despite the range of therapeutic techniques available, these therapies are usually accompanied by side effects, which is why it is interesting to study new alternatives based on tissue engineering that can potentially increase the effectiveness of anticancer results and decrease the occurrence of adverse effects. Among the Nanomedicine techniques used in cancer, nanoparticles (NPs), which are biocompatible and have been shown to be effective in animal models against the death of cancer cells and the decrease of tumor size, since by strongly absorbing near-infrared radiation they act as sources of local hyperthermia. In order to increase the biological effects of NPs, biofunctionalization or surface activation may be used to ensure anchorage of surfactants, proteins and tissue factors required. In the present project silver nanoparticles obtained through the nucleation and reduction chemical method, in which several parameters were modified to standardize the size of the nanoparticles, a key point in the treatment of cancer, after synthesis method was made an additional process of biofunctionalisation by the polyethylene glycol (PEG) polymer to improve the anchoring and biocompatibility properties of the nanoparticles. For the characterization of the nanoparticles, we proceeded with scanning and transmission electron microscopy techniques, in addition to spectophometric UV-Vis and an assay to determine the viability and cytotoxicity of nanoparticles. It was concluded that with the implemented procedure could be synthesized and characterized nanoparticles for their potential use in the treatment of skin cancer.

Keywords : biocompatibility; biofunctionalization; skin cancer; tissue engineering; silver nanoparticles; synthesis.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )