SciELO - Scientific Electronic Library Online

 
 número108Evaluación de un reactor discontinuo secuencial implementando mezcla y aireación por recirculación mediante un Venturi índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista Facultad de Ingeniería Universidad de Antioquia

versión impresa ISSN 0120-6230versión On-line ISSN 2422-2844

Resumen

DUARTE-GARCIA, Mateo; PATINO-ARCILA, Iván David  y  ISAZA-MERINO, Cesar Augusto. Comparative assessment of computational models for the effective tensile strength of nano-reinforced composites. Rev.fac.ing.univ. Antioquia [online]. 2023, n.108, pp.115-123.  Epub 29-Sep-2023. ISSN 0120-6230.  https://doi.org/10.17533/udea.redin.20221103.

Some of the most important industries, such as aerospace, automotive, among others, have stipulated new requirements for materials behavior that include high specific, mechanical, and thermal properties. According to this, nanocomposites have emerged to satisfy these requirements. However, manufacturing these nanocomposites implies cost and time-consuming problems that do not allow their use in technological applications; additionally, the lack of knowledge about the prediction of their mechanical properties is an obstacle to its technological implementation. Therefore, several studies have focused on the development of computational models to predict the mechanical behavior of nano-reinforced composites. In the present work, a comparative assessment of the main computational models for predicting the tensile strength of nanocomposites is carried out. Firstly, a new taxonomy of these models is proposed, which allows identifying the main experimental variables, model evolution, and precision. With the categorization, computational algorithms are developed for these models for predicting the tensile strength of nanocomposites, accomplishing a comparative analysis of accuracy, robustness, and time-cost among them. The precision of these models is evaluated by deeming benchmark experimental works focused on the tensile strength of nanocomposites. The results obtained demonstrated a minimum relative error of 44.7%, 10.1%, and 10.6% for First-Generation, Second-Generation, and Third-Generation models, respectively. Moreover, linear and non-linear behaviors were found in the evaluated models, being coherent with the number and kind of parameters required for the assessment.

Palabras clave : nanocomposites; computational methods; mechanical properties.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )