SciELO - Scientific Electronic Library Online

 
vol.25 número53Evaluación de la extracción del colorante de totumo (Crescentia cujete L.) en un producto textilCaracterización de tintas de cemento de fosfato de calcio con adición de Poloxámero 407 para su posible aplicación en impresión 3D índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


TecnoLógicas

versión impresa ISSN 0123-7799versión On-line ISSN 2256-5337

Resumen

ESPITIA-MESA, Gabriel; HERNANDEZ-PEDRAZA, Efraín; MOLINA-TAMAYO, Santiago  y  MEJIA-GUTIERREZ, Ricardo. Design, Analysis, and Modeling of Curved Photovoltaic Surfaces Using Composite Materials. TecnoL. [online]. 2022, vol.25, n.53, e207.  Epub 10-Ago-2022. ISSN 0123-7799.  https://doi.org/10.22430/22565337.2171.

Currently, the use of photovoltaic solar energy has increased considerably due to the development of new materials and the ease to produce them, which has significantly reduced its acquisition costs. Most commercial photovoltaic modules have a flat geometry and are manufactured using metal reinforcement plates and glass sheets, which limits their use in irregular surfaces such as roofs and facades (BIPV) and the transportation sector (VIPV). The purpose of this study is to analyze the design implications of curved photovoltaic surfaces using composite materials. Considering operation and maintenance requirements, the most suitable reinforcement and encapsulation materials are selected based on references and experimental tests. It was found that the maximum radius of curvature that a polycrystalline silicon cell with the dimensions of a SunPower C60 model can achieve is 6.51 m for a failure probability lower than 5 %, which allows us to define the maximum curvature that this photovoltaic surface can reach. Additionally, an analytical model of the reinforcement was implemented using macromechanical models in Matlab™, which was validated by the finite element method employing the composite materials module in Ansys®. Therefore, this paper presents a detailed analysis of the shear stresses between the layers and of the deformations generated in the curved solar panel reinforcement. Finally, under the operating conditions assumed here, carbon fiber presents the best structural behavior in the reinforcement material, while epoxy resin exhibits a better performance in the encapsulation material. These results can facilitate the manufacturing of curved photovoltaic surfaces.

Palabras clave : Solar Energy; Photovoltaic Surfaces; Curved Solar Panel; Building-Integrated Photovoltaics (BIPV); Vehicle-Integrated Photovoltaics (VIPV).

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )