Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Citado por Google
- Similares en SciELO
- Similares en Google
Compartir
Acta Biológica Colombiana
versión impresa ISSN 0120-548X
Resumen
RICO, CLAUDIA; PAREDES, MAYERLY y FERNANDEZ, NELSON. MODELACIÓN DE LA ESTRUCTURA JERÁRQUICA DE MACROINVERTEBRADOS BENTÓNICOS A TRAVÉS DE REDES NEURONALES ARTIFICIALES. Acta biol.Colomb. [online]. 2009, vol.14, n.3, pp.71-96. ISSN 0120-548X.
El estudio de la estructura jerárquica de comunidades ecológicas, se ha sintetizado de manera regular a través de técnicas multivariadas de ordenación o clasificación. Sin embargo, al contarse actualmente con herramientas analíticas de computación bioinspirada provenientes de la inteligencia artificial, existe la oportunidad de establecer modelos ecológicos, con características deseables como flexibilidad, exactitud, robustez y confiabilidad. En este contexto, esta investigación utilizó dos métodos computacionales de utilidad en ecoinformática, referidos a redes neuronales artificiales (RNARs) para la modelación de la estructura jerárquica de una comunidad de macroinvertebrados bentónicos en términos de auto-organización y predicción. El primer método de modelación consistió en un mapa de auto-organización (MAU), una herramienta de aprendizaje no supervisado que clasificó las especies de macroinvertebrados; este MAU tomó en la capa de entrada la abundancia de cada taxa, y en la de salida proyectó su clasificación en 15 unidades y cuatro agrupamientos jerárquicos. La segunda RNA, correspondió a un Perceptrón multicapa de alimentación adelantada con algoritmo de retropropagación, que modeló separadamente la riqueza y la abundancia de Ephemeroptera, Coleoptera y Trichoptera (ECT), en función de nueve variables fisicoquímicas; la arquitectura del perceptrón correspondió a una constitución de nueve, siete, y una neurona en las capas de entrada, intermedia y salida, respectivamente. Los resultados sugieren que las RNARs utilizadas evidenciaron tanto los patrones jerárquicos, como los de riqueza y abundancia de ECT de manera adecuada, al tiempo que facilitaron el análisis de los datos y el entendimiento de la dinámica de la comunidad de macroinvertebrados, objeto de estudio.
Palabras clave : ecología computacional; ecología informática; mapa de auto-organización; perceptrón multicapa; Matlab.