SciELO - Scientific Electronic Library Online

 
 número95Efficiency of the removal of microcystin-LR by UV-radiation and hydrogen peroxideDesign of a load carriage system oriented to reduce acceleration forces when carrying a backpack índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Facultad de Ingeniería Universidad de Antioquia

versão impressa ISSN 0120-6230versão On-line ISSN 2422-2844

Resumo

GOMEZ-OROZCO, Viviana et al. A machine learning approach to support deep brain stimulation programming. Rev.fac.ing.univ. Antioquia [online]. 2020, n.95, pp.20-33. ISSN 0120-6230.  https://doi.org/10.17533/udea.redin.20190729.

Adjusting the stimulation parameters is a challenge in deep brain stimulation (DBS) therapy due to the vast number of different configurations available. As a result, systems based on the visualization of the volume of tissue activated (VTA) produced by a particular stimulation setting have been developed. However, the medical specialist still has to search, by trial and error, for a DBS set-up that generates the desired VTA. Therefore, our goal is developing a DBS parameter tuning strategy for current clinical devices that allows defining a target VTA under biophysically viable constraints. We propose a machine learning approach that allows estimating the DBS parameter values for a given VTA, which comprises two main stages: i) A K-nearest neighbors-based deformation to define a target VTA preserving biophysically viable constraints. ii) A parameter estimation stage that consists of a data projection using metric learning to highlight relevant VTA properties, and a regression/ Classification algorithm to estimate the DBS parameters that generate the target VTA. Our methodology allows setting a biophysically compliant target VTA and accurately predicts the required configuration of stimulation parameters. Also, the performance of our approach is stable for both isotropic and anisotropic tissue conductivities. Furthermore, the computational time of the trained system is acceptable for real-world implementations.

Palavras-chave : Volume of tissue activated; kernel-based learning; anisotropy.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )