SciELO - Scientific Electronic Library Online

 
vol.50 número2Construction of Bh[g] sets in product of groupsQuantum Information and the Representation Theory of the Symmetric Group índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Colombiana de Matemáticas

versão impressa ISSN 0034-7426

Rev.colomb.mat. vol.50 no.2 Bogotá jul./dez. 2016

https://doi.org/10.15446/recolma.v50n2.62209 

DOI: https://doi.org/10.15446/recolma.v50n2.62209

On the energy of symmetric matrices and Coulson's integral formula

Sobre la energía de matrices simétricas y la fórmula integral de Coulson

J. A. de la Peña1, J. Rada2

1 Centro de Investigación en Matemáticas, A.C., Guanajuato, México. jap@cimat.mx
2 Universidad de Antioquia, Medellín, Colombia. pablo.rada@udea.edu.co


Abstract

We define the outer energy of a real symmetric matrix M as for the eigenvalues λ1, …, λn of M and their arithmetic mean . We discuss the properties of the outer energy in contrast to the inner energy defined as Einn(M) = . We prove that Einn is the maximum among the energy functions e: S(n) → R and Eout among functions f (M - 1n, where f is an energy function. We prove a variant of the Coulson integral formula for the outer energy.

Keywords: Total π-electron energy, Energy of a symmetric matrix, Bounds for energy, Coulson's integral formula.


Mathematics Subject Classification: 05C50.


Resumen

Definimos la energía exterior de una matriz simétrica real M como donde λ1, …, λn son los autovalores M y es su media aritmética. Discutimos las propiedades de la energía exterior en contraste con la energía interior definida como Einn(M) = . Demostramos que Einn es máxima entre todas las funciones de energía e: S(n) → R y Eout entre todas las funciones f (M - 1n, donde f es una función de energía. Demostramos una variante de la fórmula integral de Coulson para la energía exterior.

Palabras claves: Energía π-electrón total, Energía de una matriz simétrica, Cotas para la energía, Fórmula integral de Coulson.


Texto completo disponible en PDF


References

[1] J. N. Abreu, D. M. Cardoso, I. Gutman, E. A. Martins, and M. Robbiano, Bounds for the signless Laplacian energy, Lin. Algebra Appl. 435 (2011), 2365-2374.         [ Links ]

[2] C. Adiga, R. Balakrishnan, and W. So, The skew energy of a digraph, Lin. Algebra Appl. 432 (2010), 1825-1835.         [ Links ]

[3] C. Adiga and Z. Khoshbakht, On some inequalities for the skew Laplacian energy of digraphs, J. Inequal. Pure Appl. Math. 10 (2009), no. 3, Art. 80, 6p.         [ Links ]

[4] Q. Cai, X. Li, and J. Song, New skew laplacian energy of simple digraphs, Trans. Comb. 2 (2013), no. 1, 27-37.         [ Links ]

[5] M. Cavers, S. Fallat, and S. Kirkland, On the normalized Laplacian energy and general Randić index r-1 of graphs, Lin. Algebra Appl. 433 (2010), 172-190.         [ Links ]

[6] V. Consonni and R. Todeschini, New spectral index for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008), 3-14.         [ Links ]

[7] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungszentrum Graz 103 (1978), 1-22.         [ Links ]

[8] I. Gutman, Bounds for all graph energies, Chem. Phys. Lett. 528 (2012), 72-74.         [ Links ]

[9] I. Gutman and X. Li (Eds), Energies of graphs - theory and applications, Univ. Kragujevac, Kragujevac, 2016.         [ Links ]

[10] I. Gutman and M. Mateljevic, Note on the coulson integral formula, J. Math. Chem. 39 (2006), 259-266.         [ Links ]

[11] I. Gutman and B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006), 29-37.         [ Links ]

[12] R. Horn and C. Johnson, Topics in matrix analysis, Cambridge University Press, 1991.         [ Links ]

[13] G. Indulal, I. Gutman, and A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), 461-472.         [ Links ]

[14] X. Li, Y. Shi, and I. Gutman, Graph energy, Springer-Verlag, New York, 2012.         [ Links ]

[15] M. Mateljevic, V. Bozin, and I. Gutman, Energy of a polynomial and the integral formula, J. Math. Chem. 48 (2010), 1602-1068.         [ Links ]

[16] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007), 1472-1475.         [ Links ]

[17] V. Nikiforov, Beyond graph energy: Norms of graphs and matrices, Lin. Algebra Appl. 506 (2016), 82-138.         [ Links ]

[18] I. Peña and J. Rada, Energy of digraphs, Lin. Multilin. Algebra 56 (2008), 565-579.         [ Links ]

[19] S. Pirzada and M. Bhat, Energy of signed digraphs, Discrete Appl. Math. 169 (2014), 195-205.         [ Links ]

[20] S. Pirzada, M. Bhat, I. Gutman, and J. Rada, On the energy of digraphs, Bull. IMVI 3 (2013), no. 1, 69-76.         [ Links ]

[21] J. Rada, The mcClelland inequality for the energy of digraphs, Lin. Algebra Appl. 430 (2009), 800-804.         [ Links ]

[22] J. Rada, Lower bound for the energy of digraphs, Lin. Algebra Appl. 432 (2010), 2174-2180.         [ Links ]

[23] J. Rada, Bounds for the energy of normal digraphs, Lin. Multilin. Algebra 60 (2012), 323-332.         [ Links ]

[24] J. Rada, I. Gutman, and R. Cruz, The energy of directed hexagonal systems, Lin. Algebra Appl. 439 (2013), 1825-1833.         [ Links ]

[25] H. S. Ramane, I. Gutman, and D. S. Revankar, Distance equienergetic graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), 473-484.         [ Links ]

[26] W. So, M. Robbiano, N. M. M. de Abreu, and I. Gutman, Applications of a theorem by ky fan in the theory of graph energy, Lin. Algebra Appl. 432 (2010), 2163-2169.         [ Links ]

Recibido: julio de 2016 Aceptado: septiembre de 2016

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons