SciELO - Scientific Electronic Library Online

 
vol.29 número54Desenho e implementação de um emulador para uma turbina eólica de baixa potência através do conserto motor de indução-gerador de ímãs permanentesCaracterização de gerador de indução para um gerador eólico de média e baixa potência índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Facultad de Ingeniería

versão impressa ISSN 0121-1129versão On-line ISSN 2357-5328

Resumo

RAMIREZ-ARIAS PH. D., José-Luis; RUBIANO-FONSECA PH. D., Astrid  e  JIMENEZ-MORENO PH. D., Robinson. Reconocimiento de objetos a través de técnicas de inteligencia artificial. Rev. Fac. ing. [online]. 2020, vol.29, n.54, e10734.  Epub 01-Fev-2020. ISSN 0121-1129.  https://doi.org/10.19053/01211129.v29.n54.2020.10734.

En el presente artículo se describe una metodología para el reconocimiento de objetos, los cuales se han clasificado en poliedros y no poliedros, este reconocimiento se logra mediante procesamiento digital de imágenes combinada con el uso de algoritmos de inteligencia artificial, como son las redes neuronales de Hopfield. En una primera etapa se procesa las imágenes, con el fin de obtener los patrones a entrenar, dicho proceso fue desarrollado en tres etapas: i.) Segmentación, ii.) Reconocimiento inteligente, iii.) Extracción de características, a partir de los resultados obtenidos, en este caso imágenes de los objetos, estos elementos se entrenan en la red neuronal diseñada, finalmente se hace uso de la red neuronal de Hopfied propuesta, la cual, al recibir un nuevo elemento o imagen de un objeto, determinará el tipo de objeto. La metodología propuesta fue evaluada en un ambiente real, mostrando un amplio número de imágenes detectadas, la incertidumbre al reconocer imágenes ruidosas, representa el 2,6% de la muestra, ofreciendo una respuesta aceptable frente a condiciones de luz, forma y color variables, los resultados obtenidos a partir del experimento evidencian un grado alto de reconocimiento del 97.4%, consecuentemente, a partir de este procedimiento es posible entrenar nuevos patrones con nuevas formas, y se espera que este modelo de reconocimiento sea capaz de reconocer patrones completamente nuevos. La metodología propuesta potencialmente puede ser utilizada en diferentes aplicaciones, como es la identificación de objetos en procesos industriales, funciones de agarre de objetos mediante el uso de manipuladores o brazos robóticos, en el área de la rehabilitación como ayuda a personas con limitaciones visuales, entre otras.

Palavras-chave : operaciones morfológicas; reconocimiento de imágenes en 2D; red de Hopfield; redes neuronales.

        · resumo em Português | Inglês     · texto em Inglês     · Inglês ( pdf )