SciELO - Scientific Electronic Library Online

 
vol.15 número2CHARACTERISTICS OF COMSUMPTION OF PSYCHOTROPIC DRUGS AMONG STUDENTS OF HEALTH SCIENCESSYNTHESIS AND in vitro LEISHMANICIDAL AND CYTOTOXIC ACTIVITIES OF 2-STYRYLQUINOLINES ANALOGS índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Vitae

versão impressa ISSN 0121-4004

Resumo

CASTANO P, Hader I  e  MEJIA G, Carlos E. ETHANOL PRODUCTION FROM CASSAVA STARCH USING THE PROCESS STRATEGY SIMULTANEOUS SACCHARIFICATION-FERMENTATION. Vitae [online]. 2008, vol.15, n.2, pp.251-258. ISSN 0121-4004.

The world trend on fuel management, in special biofuels like ethanol, have gone to explorer new methodologies of process to optimize its production by this reason in this research is about simultaneous sacarification fermentation process and evaluate initial concentration of reducing sugar, and enzyme dosing of Spirizyme fuel® are evaluated on productivity and final concentration of ethanol, under SSF (Simultaneous Saccharification and Fermentation) process, from the product of the licuefaction process of cassava starch as substrate. The SSF process is evaluated against SHF (Independent Saccharification and Fermentation) process as control. Only the factor, initial concentration of substrate presents effect over ethanol productivity. The kinetic of SSF process, in opposite to the SHF process, presents time diminution of the global process around 47 y 33% to substrate levels of 150 and 200 g/l respectively. The productivity values are most at a 33% to 150 g/l of reducing sugar, and they keep constant to 200 g/l reducing sugar. The glucose in SSF strategy, at the time it is producing, it is transformed to ethanol, does not allowing to reach superior concentration to 100 g/l of reducing sugar, this implicates there is not substrate inhibition. The ethanol concentration doesn't affect the enzymatic process of sacharification. The SSF process demonstrates his technical viability on the ethanol production, to reduce time an energy requirements on the ethanol production from cassava flour.

Palavras-chave : Bioethanol; cassava starch; simultaneous saccharification and fermentation (SSF); Separated hydrolysis and fermentation (SHF).

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons