Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.39 no.2 Bogotá July/Dec. 2005
Antonio J. Di Scala
Dipartimento di Matematica. Politecnico di Torino. Corso Duca degli Abruzzi 24, 10129 Torino - Italy
e-mail: antonio.discala@polito.it
Abstract. The first part of this article presents the definition of Lie Bracket related to commuting flows of vector fields. In the second part, basic definitions and of connections and curvature are given in order to emphasize the link between Lie Brackets and curvature. Finally, by using locally-defined connections, we give a short and original proof of a classical theorem of Beltrami. The article is addressed to a non specialist in local differential geometry.
Keywords and phrases. Lie Bracket, curvature tensor, a±ne connection.
2000 Mathematics Subject Classification. Primary: 53B20. Secondary: 53B21.
Resumen. La primera parte del artículo presenta al corchete de Lie asociado al problema de la comutatividad de dos flujos. En la segunda parte se introducen las definiciones básicas de conexión y curvatura en fibrados vectoriales, subrayando la relación corchete-curvatura. Finalmente, usando conexiones afines localmente definidas, se da una demostración original y sencilla de un teorema de Eugenio Beltrami. Este artículo apunta a un lector no especialista (e.g. un estudiante de doctorado en matemática o física, etc) en geometría diferencial local.
FULL TEXT IN PDF
[BCO] J. Berndt, S. Console and C. Olmos, Submanifolds and Holonomy (Research Notes in Mathematics Series), Chapman & Hall/CRC, Boca Raton, 2003. [ Links ]
[Bel] E. Beltrami, Resoluzione del problema: riportari i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette, Ann. Mat. 1, no. 7 (1865), 185-204. [ Links ]
[Ber] M. Berger, A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003. [ Links ]
[Car] E. Cartan, Lecons sur la Géométrie des Espaces de Riemann, GauthierVillars, Paris, 1928. [ Links ]
[ChEb] J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Pub. Co., Amsterdam, 1975. [ Links ]
[DiS] A. J. Di Scala, On an assertion in Riemann's Habilitationsvortrag, Enseign. Math. 47 no. 1-2 (2001), 57-63. [ Links ]
[Eis] L. P. Eisenhart, Riemannian Geometry, 2ed, Princeton University Press, Princeton, 1949. [ Links ]
[KNI] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 1, Interscience Publishers, New York, 1963. [ Links ]
[HeLi] E. Heintze and X. Liu, Homogeneity of infinite dimensional isoparametric submanifolds, Ann. of Math. 149 no. 1 (1999), 149-181. [ Links ]
[Mat] V. S. Matveev, Geometric explanation of the Beltrami Theorem, Internet (2003). [ Links ]
[MoOl] B. Molina and C. Olmos, Manifolds all of whose flats are closed, J. Differential Geom. 45 no. 3 (1997), 575-592. [ Links ]
[Mil] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215-223. [ Links ]
[Olm] C. Olmos, A geometric proof of Berger holonomy theorem, Ann. of Math. 161 no. 1 (2005), 579-588. [ Links ]
[Sp2] M. Spivak, A comprehensive Introduction to Diffrential Geometry, Vol. 2, 2nd ed, Perish, Inc., Berkeley, California, 1979. [ Links ]
[Sp3] M. Spivak, A comprehensive Introduction to Differential Geometry, Vol. 3, 2nd ed, Publish or Perish, Inc., Berkeley, California, 1979. [ Links ]
[Ste] P. Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math. Soc. 29 (1974), 699-713. [ Links ]
[Zeg] A. Zeghib, Remarks on Lorentz symmetric spaces, Compositio Math., 140 (2004), 1675-1678. [ Links ]
(Recibido en febrero de 2005. Aceptado en noviembre de 2005)