SciELO - Scientific Electronic Library Online

 
vol.40 issue1REDUCTION TO NORMAL FORM OF A SELF-ADJOINT LINEAR TRANSFORMATION WITH RESPECT TO A PSEUDO-UNITARY OR A PSEUDO-EUCLIDEAN INNER PRODUCTTHE ANALYTIC FIXED POINT FUNCTION II author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.40 no.1 Bogotá Jan./June 2006

 

THE DIOPHANTINE EQUATION x 2 + c = y n: a brief overview

 

Fadwa S. Abu Muriefah

Mathematics Department Girls College Of Education P.O. Box 60561 Riyadh 11555, Saudi Arabia

e-mail: abumuriefah@yahoo.com

Yann Bugeaud

U. F. R. de mathématiques Université Louis Pasteur 7, rue René Descartes 67084 Strasbourg Cedex, France

e-mail: bugeaud@math.u-strasbg.fr



ABSTRACT. We give a survey on recent results on the Diophantine equation x2 + c = yn.

Key words and phrases. Diophantine equations, Baker's method.

2000 Mathematics Subject Classification. Primary: 11D61.


RESUMEN. Nosotros hacemos una revisión acerca de resultados recientes sobre la ecuación Diofántica x2 + c = yn.

Acknowledgements. We are pleased to thank the referee for his very careful reading of a first version of our text.


TEXTO COMPLETO EN PDF


REFERENCES

[1] F. S. Abu Muriefah, On the Diophantine equation x2 + 52k = yn, Demo. Math. (To appear).         [ Links ]

[2] F. S. Abu Muriefah & S. A. Arif, On a Diophantine equation, Bull. Austral. Math. Soc. 57 (1998), 189-198.        [ Links ]

[3] F. S. Abu Muriefah & S. A. Arif, The Diophantine equation x2+52k+1 = yn, Indian J. Pure Appl. Math. 30 (1999), 229-231.         [ Links ]

[4] F. S. Abu Muriefah & S. A. Arif, The Diophantine equation x2 + q2k = yn, Arab. J. Sci. Eng. Sect. A Sci. 26 (2001), 53-62.         [ Links ]

[5] S. A. Arif & F. S. Abu Muriefah, On the Diophantine equation x2 + 2k = yn, Internat. J. Math. Math. Sci. 20 (1997), 299-304.         [ Links ]

[6] S. A. Arif & F. S. Abu Muriefah, The Diophantine equation x2+3m = yn, Internat. J. Math. Math. Sci. 21 (1998), 619-620.         [ Links ]

[7] S. A. Arif & F. S. Abu Muriefah, On the Diophantine equation x2 + 2k = yn. II,, Arab. J. Math. Sci. 7 (2001), 67-71.         [ Links ]

[8] S. A. Arif & F. S. Abu Muriefah, On the Diophantine equation x2 + q2k+1 = yn, J. Number Theory 95 (2002), 95-100.         [ Links ]

[9] M. A. Bennett & C. M. Skinner, Ternary Diophantine equations via Galois repre- sentations and modular forms, Canad. J. Math. 56 [1] (2004), 23-54.        [ Links ]

[10] Yu. Bilu, On Le's & Bugeaud's papers about the equation ax2+b2m-1 = 4cp, Monatsh. Math. 137 (2002), 1-3.         [ Links ]

[11] Yu. Bilu, G. Hanrot, & P. M. Voutier, with an appendix by M. Mignotte, Existence of primitive divisors of Lucas and Lehmer sequences, J. Reine Angew. Math. 539 (2001), 75-122.         [ Links ]

[12] Y. Bugeaud, M. Mignotte & S. Siksek, Classical and modular approaches to expo- nential Diophantine equations II. The Lebesgue-Nagell equation, Compositio Math. 142 (2006), 31-62.         [ Links ]

[13] J. H. E. Cohn, The Diophantine equation x2+2k = yn, Arch. Math. (Basel) 59 (1992), 341-344.         [ Links ]

[14] J. H. E. Cohn, The Diophantine equation x2+C = yn, Acta Arith. 65 (1993), 367-381.         [ Links ]

[15] J. H. E. Cohn, The Diophantine equation x2 + 2k = yn. II, Int. J. Math. Math. Sci. 22 (1999), 459-462.         [ Links ]

[16] J. H. E. Cohn, The Diophantine equation x2 + C = yn. II, Acta Arith. 109 (2003), 205-206.         [ Links ]

[17] Maohua Le, A note on the Diophantine equation x2 + 7 = yn, Glasgow Math. J. 39 (1997), 59-63.         [ Links ]

[18] M. Le, On Cohn's conjecture concerning the Diophantine equation x2+2m = yn, Arch. Math. (Basel) 78 [1] (2002), 26-35.         [ Links ]

[19] M. Le, On the Diophantine equation x2 + p2 = yn, Publ. Math. Debrecen 63 (2003), 67-78.         [ Links ]

[20] V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'équation xm = y2 + 1, Nouvelles Annales des Mathématiques 1 [9] (1850), 178-181.         [ Links ]

[21] J.-L. Lesage, Différence entre puissances et carrés d'entiers, J. Number Theory 73 (1998), 390-425.         [ Links ]

[22] W. Ljunggren, Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen, Ark. Mat. Astr. Fys. 29A [13] (1943).         [ Links ]

[23] F. Luca, On a Diophantine equation, Bull. Austral. Math. Soc. 61 (2000), 241-246.         [ Links ]

[24] F. Luca, On the equation x2 +2a3b = yn, Int. J. Math. Math. Sci. 29 (2002), 239-244.         [ Links ]

[25] M. Mignotte, A kit on linear forms in three logarithms, IRMA, Strasbourg, to appear.         [ Links ]

[26] M. Mignotte & B. M. M. de Weger, On the Diophantine equations x2 + 74 = y5 and x2 + 86 = y5, Glasgow Math. J. 38 (1996), 77-85.         [ Links ]

[27] T. Nagell, Sur l'impossibilité de quelques équations à deux indéterminées, Norsk Mat. Forensings Skrifter 13 (1923), 65-82.         [ Links ]

[28] T. Nagell, LΦsning til oppgave nr 2, 1943, s. 29, Nordisk Mat. Tidskr. 30 (1948), 62-64.         [ Links ]

[29] T. Nagell, Verallgemeinerung eines Fermatschen Satzes, Arch. Math. (Basel) 5 (1954), 153-159.         [ Links ]

[30] T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Regiae Soc. Sci. Upsaliensis 4 16 [2] (1955).         [ Links ]

[31] T. Nagell, Collected papers of Trygve Nagell. Vol. 1-4., Edited by Paulo Ribenboim. Queen's Papers in Pure and Applied Mathematics, Queen's University 121, Kingston, ON, 2002.         [ Links ]

[32] T. N. Shorey & R. Tijdeman, Exponential Diophantine equations, Cambridge Uni- versity Press, Cambridge, 1986.        [ Links ]

[33] S. Siksek, On the Diophantine equation x2 = yp +2kzp, J. Théor. Nombres Bordeaux 15 (2003), 839-846.         [ Links ]

[34] S. Siksek, The modular approach to Diophantine equations., In: Explicit Methods in Number Theory, Panoramas et Synthèses,, Société Mathématique De France, to appear.         [ Links ]

[35] S. Siksek & J. E. Cremona, On the Diophantine equation x2 + 7 = ym, Acta Arith. 109 (2003), 143-149.        [ Links ]

[36] V. G. Sprindzuk, Classical Diophantine equations, Lecture Notes in Mathematics 1559, Springer-Verlag, Berlin, 1993.         [ Links ]

[37] B. Sury, On the Diophantine equation x2 + 2 = yn, Arch. Math. (Basel) 74 (2000), 350-355.         [ Links ]

Recibido en octubre de 2005. Aceptado en febrero de 2006

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License