SciELO - Scientific Electronic Library Online

 
vol.40 issue1THE ANALYTIC FIXED POINT FUNCTION IIAN IMPROVED CONVERGENCE ANALYSIS OF A SUPERQUADRATIC METHOD FOR SOLVING GENERALIZED EQUATIONS author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.40 no.1 Bogotá Jan./June 2006

 

EXISTENCE OF GLOBAL ENTROPY SOLUTIONS TO A NON-STRICTLY HYPERBOLIC SYSTEM WITH A SOURCE

 

Rei-Fang Yang

College of Sciences. University of Aeronautics & Astronautics. Nanjing 210016.

Nanjing, China

e-mail: zjbyrn@nuaa.edu.cn


ABSTRACT. In this paper we use the theory of compensated compactness coupled with some basic ideas of the Kinetic formulation to establish an existence theorem for global entropy solutions to the non-strictly hyperbolic system with a source Imagen 1.

Keywords and phrases. Entropy solution, Kinetic formulation, the maximum principle.

2000 Mathematics Subject Classification. Primary: 35D05.


RESUMEN. En este artículo usamos la teoría de la compacidad compensada asociada con algunas ideas básicas de formulación Kinetica para establecer un teorema de existencia para soluciones de entropía global del sistema no estrictamente hiperbólico con fuente Imagen 1.


FULL TEXT IN PDF


REFERENCES

[1] G. Q. Chen & J. Glimm, Global solutions to the compressible Euler equations with geometric structure, Commun. Math. Phys. 180 (1996), 153-193.         [ Links ]

[2] X.Ding, G-Q. Chen & P. Luo, Convergence of the fractional step Lax- Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Commn. Math. Phys 12 (1989), 63-84.         [ Links ]

[3] R. J. Diperna, Global solutions to a class of nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 26 (1973), 1-28.         [ Links ]

[4] S. Earnshaw,On the mathematical theory of sound, Philos.Trans. 150 (1858), 1150-1154.         [ Links ]

[5] J. Glimm, Solutions in the large for nonliear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 95-105.         [ Links ]

[6] C. Klingenberg & Y.-G. Lu, Existence of solutions to hyperbolic conservation Laws with a source, Commun. Math. Phys. 187 (1997), 327-340.         [ Links ]

[7] P. L. Lions, B. Perthame & P. E. Souganidis, Existence and stabibility of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 49 (1996), 599-638.         [ Links ]

[8] P.L. Lions, B. Perthame & E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-system, Comm. Pure Appl. Math. 163 (1994), 415-431.         [ Links ]

[9] T. P. Liu, Quasilinear hyperbolic systems, Commn. Math. Phys. 68 (1979), 141-172.         [ Links ]

[10] Y. -G. Lu, Convergence of the viscosity method for nonstrictly hyperbolic conservation laws, Commun. Math. Phys. 150 (1992), 59-64.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License