SciELO - Scientific Electronic Library Online

 
vol.41 issue1CW-complexes with duality author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.41 no.1 Bogotá Jan./June 2007

 

Ostrowski, Grüss, Cebysev type inequalities for functions whose second derivatives belong to Lp(a, b) and whose modulus of second derivatives are convex

Desigualdades del tipo Ostrowski, Grüss, Cebysev para funciones cuya segunda derivada pertenece a Lp(a, b) y cuyo módulo de segunda derivada es convexo

ARIF RAFIQ1, FAROOQ AHMAD2

1COMSATS Institute of Information Technology, Department of Mathematics, Technology Plot 30, H-8/1, Islamabad 44000, Pakistaná.
E-mail: arafiq@comsats.edu.pk
2Bahauddin Zakariya University, Centre for Advanced Studies in Pure and Applied Mathematics, Multan 60800, Pakistaná.
E-mail: farooqgujar@gmail.com


Abstract

Ostrowski, Grüss, Cebysev type inequalities involving functions whose second derivatives belong to Lp(a,b) and whose modulus of second derivatives are convex are established. The results provide better bounds than those currently available in the literature.

Key words: Ostrowski Grüss Cebysev inequalities, modulus of second derivative convex, convex function.


2000 Mathematics Subject Classification. Primary: 65C10. Secondary: 65A12.

Resumen

Se establecen desigualdades de tipo Ostrowski, Grüss, Cebysev que comprenden funciones cuyas segundas derivadas pertenecen a Lp(a,b) y cuyos módulos de segundas derivadas son convexos. Los resultados obtenidos proporcionan mejores cotas que las actualmente disponibles en la literatura.

Palabras clave: Inecuaciones de Ostrowski Grüss Cebysev, modulos convexos de segunda derivada, función convexa.


Texto completo disponible en PDF


References

[1] N. S. BARNETT, P. CERONE, S. S. DRAGOMIR, M. R. PINHEIRO & A. SOFO, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, RGMIA Res. Rep. Collec. 5 (2002) 2, 219-231.         [ Links ]

[2] P. CERONE & S. S. DRAGOMIR, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstratio Math. 37 (2004) 2, 299-308.         [ Links ]

[3] S. S. DRAGOMIR & TH. M. RASSIAS (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrect, 2002.         [ Links ]

[4] S. S. DRAGOMIR & A. SOFO, Ostrowski type inequalities for functions whose derivatives are convex, Proceeding of the 4th International Conference on Modelling and Simulation, November 2002. Victoria University, Melbourne, Australia. RGMIA Res. Rep. Collec. 5 (2002) Supp., Art. 30.         [ Links ]

[5] N. A. MIR, A. RAFIQ & M. RIZWAN, Ostrowski Grüss Cebysev type inequalities for functions whose modulus of second derivatives are convex, submitted.         [ Links ]

[6] D. S. MITRINOVIC, J. E. PECARIC & A. M. FINK, Inequalities Involving Functions and Their Integrals and Derivatives, Kluver Academic Publishers, Dordrecht, 1991.         [ Links ]

[7] D. S. MITRINOVIC, J. E. PECARIC & A. M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrect, 1993.         [ Links ]

[8] B. G. PACHPATTE, A note on integral inequalities involving two log-convex functions, Math. Inequal. Appl. 7 (2004) 4, 511-515.         [ Links ]

[9] B. G. PACHPATTE, A note on Z Hadamard type integral inequalities involving several log-convex functions, Tamkang J. Math. 36 (2005) 1, 43-47.         [ Links ]

[10] B. G. PACHPATTE, Mathematical Inequalities, North-Holland Mathematical Library, Vol. 67 Elsvier, 2005.         [ Links ]

[11] B. G. PACHPATTE, On Ostrowski-Grüss-Cebysev type inequalities for functions whose modulus of derivatives are convex, JIPAM 6 (2005) 4, 1-14.         [ Links ]

[12] J. E. PECARIC, F. PROSCHAN & Y. L. TANG, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1991.         [ Links ]

(Recibido en agosto de 2006. Aceptado en marzo de 2007)

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License