Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.41 no.1 Bogotá Jan./June 2007
1COMSATS Institute of Information Technology, Department of Mathematics, Technology Plot 30, H-8/1, Islamabad 44000, Pakistaná.
E-mail: arafiq@comsats.edu.pk
2Bahauddin Zakariya University, Centre for Advanced Studies in Pure and Applied Mathematics, Multan 60800, Pakistaná.
E-mail: farooqgujar@gmail.com
Ostrowski, Grüss, Cebysev type inequalities involving functions whose second derivatives belong to Lp(a,b) and whose modulus of second derivatives are convex are established. The results provide better bounds than those currently available in the literature.
Key words: Ostrowski Grüss Cebysev inequalities, modulus of second derivative convex, convex function.
2000 Mathematics Subject Classification. Primary: 65C10. Secondary: 65A12.
Se establecen desigualdades de tipo Ostrowski, Grüss, Cebysev que comprenden funciones cuyas segundas derivadas pertenecen a Lp(a,b) y cuyos módulos de segundas derivadas son convexos. Los resultados obtenidos proporcionan mejores cotas que las actualmente disponibles en la literatura.
Palabras clave: Inecuaciones de Ostrowski Grüss Cebysev, modulos convexos de segunda derivada, función convexa.
Texto completo disponible en PDF
[1] N. S. BARNETT, P. CERONE, S. S. DRAGOMIR, M. R. PINHEIRO & A. SOFO, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, RGMIA Res. Rep. Collec. 5 (2002) 2, 219-231. [ Links ]
[2] P. CERONE & S. S. DRAGOMIR, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstratio Math. 37 (2004) 2, 299-308. [ Links ]
[3] S. S. DRAGOMIR & TH. M. RASSIAS (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrect, 2002. [ Links ]
[4] S. S. DRAGOMIR & A. SOFO, Ostrowski type inequalities for functions whose derivatives are convex, Proceeding of the 4th International Conference on Modelling and Simulation, November 2002. Victoria University, Melbourne, Australia. RGMIA Res. Rep. Collec. 5 (2002) Supp., Art. 30. [ Links ]
[5] N. A. MIR, A. RAFIQ & M. RIZWAN, Ostrowski Grüss Cebysev type inequalities for functions whose modulus of second derivatives are convex, submitted. [ Links ]
[6] D. S. MITRINOVIC, J. E. PECARIC & A. M. FINK, Inequalities Involving Functions and Their Integrals and Derivatives, Kluver Academic Publishers, Dordrecht, 1991. [ Links ]
[7] D. S. MITRINOVIC, J. E. PECARIC & A. M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrect, 1993. [ Links ]
[8] B. G. PACHPATTE, A note on integral inequalities involving two log-convex functions, Math. Inequal. Appl. 7 (2004) 4, 511-515. [ Links ]
[9] B. G. PACHPATTE, A note on Z Hadamard type integral inequalities involving several log-convex functions, Tamkang J. Math. 36 (2005) 1, 43-47. [ Links ]
[10] B. G. PACHPATTE, Mathematical Inequalities, North-Holland Mathematical Library, Vol. 67 Elsvier, 2005. [ Links ]
[11] B. G. PACHPATTE, On Ostrowski-Grüss-Cebysev type inequalities for functions whose modulus of derivatives are convex, JIPAM 6 (2005) 4, 1-14. [ Links ]
[12] J. E. PECARIC, F. PROSCHAN & Y. L. TANG, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1991. [ Links ]