SciELO - Scientific Electronic Library Online

 
vol.41 suppl.1Network tomographyExistence and uniqueness of a positive author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.41  suppl.1 Bogotá Oct. 2007

 

Boundary value problems for the Vlasov-Maxwell system

ALEXANDRE V. SINITSYN1, EUGENE V. DULOV2

1 Departamento of Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia. E-mail: avsinitsyn@yahoo.com
2 Departamento of Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia. E-mail: edulov@yahoo.com


Abstract

The paper studies the special classes of the stationary and nonstationary solutions of VM system and their connection with the systems of nonlocal semilinear elliptic equations with boundary conditions. Using the proposed lower-upper solution method, we proved an existence theorem for a semilinear nonlocal elliptic boundary value problem under corresponding restrictions over the distribution function (ansatz RSS 52, 53).

Key words: Vlasov-Maxwell system, boundary value problem, upper-lower solution.


2000 Mathematics Subject Classification: Primary: 54H25. Secondary: 35J65.

Resumen

El artículo estudia clases especiales de soluciones estacionarias y no estacionarias de sistemas VM y su conexión con los sistemas semilineales elípticos no locales con condiciones de frontera. Usando el método de bajo-alto demostramos un teorema de existencia para un problema elíptico semilineal no local con valor de frontera bajo las restricciones correspondientes sobre la función de distribución (ver ansatz RSS 52, 53)

Palabras clave: Sistema Vlasov-Maxwell, problema del valor límite, solución superior-inferior.


Texto completo disponible en PDF


References

1 N. B. Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system, Math. Methods Appl. Sci. 17 (1994), 451-476.         [ Links ]

2 N. B. Abdallah, P. Degond & F. Mehats, Mathematical models of magnetic insulation, Rapport interne, Universite Paul Sabatier, France, 1997.         [ Links ]

3 N. B. Abdallah, P. Degond & P. A. Markowich, The quantum child-langmuir problem, Nonl. Anal. TMA. 31 (1998), 629-648.         [ Links ]

4 N. B. Abdallah, P. Degond & I. M. Gamba, Coupling one-dimensional time- dependent classical and quantum transport models, J. Math. Phys. 43 (2002) 1, 1-24.         [ Links ]

5 N. B. Abdallah & J. Dolbeault, Entropies relatives pour le systéme de Vlasov-Poisson dans des domaines bornés, C.R.A.S. Ser. I: Math. 330 (2000) 10, 867-872.         [ Links ]

6 H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18 (1976) 4, 620-709.         [ Links ]

7 A. Ambroso, Sur la résolution des problémes de Vlasov-Poisson et Euler- Poisson. Applications a la physique des plasma, PhD Thesis, Ecole Polytechnique, 2000.         [ Links ]

8 A. Ambroso, X. Fleury, B. Lucquin-Desreux & P. A. Raviart, Some remarks on the stationary Vlasov-Poisson system with source, Transport Theory and Statistical Physics 30 7 (2001), 587-616.         [ Links ]

9 H. Andreasson, G. Rein & A. D. Rendall, On the Einstein-Vlasov system with hyperbolic symmetry, Math. Proc. Camb. Phil. Soc. 134 3 (2003), 529-549.         [ Links ]

10 A. A. Arsen'ev, Existence and uniqueness of the classical solution of Vlasov's system of equations. U.S.S.R. Comput. Math. Math. Phys. 15 (1975) 5, 252-258.         [ Links ]

11 J. Batt, Global symmetric solutions of the initial-value problem of stellar dynamics, J. Diff. Equat. 25 (1977), 342-364.         [ Links ]

12 J. Batt, H. Berestycki, P. Degond & B. Perthame, Some families of solutions of the Vlasov-Poisson system , Arch. Rational Mech. Anal. 104 (1988),79-103.         [ Links ]

13 J. Batt, W. Faltenbacher & E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rat. Mech. Anal. 93 (1986), 159-183.         [ Links ]

14 J. Batt & G. Rein, Global classical solutions of the periodic Vlasov-Poisson system in: three dimensions, C.R. Acad. Sci. 313 (1991), 411-416.         [ Links ]

15 J. Batt & K. Fabian, Stationary solutions of the relativistic Vlasov-Maxwell system of plasma physics, Chin. Ann. Math. Ser. 14 (1993) B, 253-278.         [ Links ]

16 P. Braasch, Semilineare elliptische differentialgleichungen und das Vlasov- Maxwell system, Dissertation, Universität Mäunchen, 1996.         [ Links ]

17 L. Caffarelli, J. Dolbeault, P. A. Markowich & C. Schmeiser, On Maxwellian equilibria of insulated semiconductors, Interfaces Free Bound, 2 3 (2000), 331-339.         [ Links ]

18 J. Cooper & A. Klimas, Boundary-value problems for the Vlasov-Maxwell equation in one dimension, J. Math. Anal. Appl. 75 (1980), 306-329.         [ Links ]

19 P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci. 8 (1986), 533-558.         [ Links ]

20 P. Degond, Solutions stationnaires explicites du systéme Vlasov-Maxwell relativiste, C.R. Acad. Sci. Sér. I. 310 (1990), 607-612.         [ Links ]

21 P. Degond, The Child-Langmuir flow in the kinetic theory of charged particles. Part I: Electron flows in vacuum, Prépubl. Mathématiques pour l'Industrie et la Physique C.N.R.S. UFR MIG., Univ. Paul Sabatier, 1994.         [ Links ]

22 R. J. DiPerna & P. L. Lions, Solutions globales d'equations du type Vlasov- Poisson, C.R. Acad. Sci. Ser. 307 (1988) 1, 655-658.         [ Links ]

23 J. Dolbeault, Time-dependent rescaling and Lyapunov functionals for some kinetic and fluid models, TTSP 29 (2000) 3-5, 537-549.         [ Links ]

24 D. Gilbarg & N. S. Trudinger, Elliptic Partial Ddifferential Equations, Springer, New York, 1983.         [ Links ]

25 R. T. Glassey & W. A. Strauss, High velocity particles in a collisionless plasma, Math. Methods Appl. Sci. 9 (1987), 46-52.         [ Links ]

26 R. T. Glassey & J. Schaeffer, Control of velocities generated in a two- dimensional collisionless plasma with symmetry, TTSP 17 (1988), 467-560.         [ Links ]

27 R. T. Glassey & J. Schaeffer, Global existence for the relativistic Vlasov- Maxwell system with nearly neutral initial data, Comm. Math. Phys. 119 (1988), 353-384.         [ Links ]

28 R. T. Glassey & J. Schaeffer, The "two and one-half dimensional" relativistic Vlasov-Maxwell system, Commun. Math. Phys. 185 (1997), 257-284.         [ Links ]

29 D. Gogny & P. L. Lions, Sur les états d' équilibre pour les densités électroniques dans les plasmas, Model. Math. Anal. Numér Rech. Opér. 23 (1989), 137-153.         [ Links ]

30 C. Greengard & P. A. Raviart, A boundary-value problem for the stationary Vlasov-Poisson equations: The plane diode, Research Report. IBM RC 14766,1989.         [ Links ]

31 Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys. 154 (1993), 245-263.         [ Links ]

32 Y Guo & C. G. Ragazzo, On steady states in a collisionless plasma, Comm. Pure Appl. Math. 49 (1996), 1145-1174.         [ Links ]

33 E. Horst, On the classical solution of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Methods Appl. Sci. Part 1: 3 (1981), 229-248; Part 2: 4 (1982), 19-32.         [ Links ]

34 E. Horst, Global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Habilitationsschrift Universität Mäunchen, 1986.         [ Links ]

35 E. Horst, Symmetric plasmas and decay, Commun. Math. Phys. 126 (1990), 613-633.         [ Links ]

36 R. Illner & H. Neunzert, An existence theorem for the unmodified Vlasov equation, Math. Meth. Appl. Sci. 1 (1979), 530-554.         [ Links ]

37 S. Iordanskij, The Cauchy problem for the kinetic equation of plasma, Ser. 2, Am. Math. Soc. 35 (1964), 351-363.         [ Links ]

38 P. E. Jabin & B. Perthame, Compactness in Gizburg-Landau energy by kinetic averaging, Comm. Pure Appl. Math., 54 (2001), 1096-1109.         [ Links ]

39 P. E. Jabin, The Vlasov-Poisson system with infinite mass and energy, Journal of Statistical Physics, 103 5-6 (2001), 1107-1123.         [ Links ]

40 M. A. Krasnosel'skij, Positive Solutions of Operator Equations, P. Noordhoff Ltd. Groningen, 1964.         [ Links ]

41 A. Krzywicki & T. Nadzieja, Poisson-Boltzmann equation in R3, Report Institute of Math. Wroclaw Univ., Poland, 1988.         [ Links ]

42 V. P. Maslov, On the integral equation u(x)=F(x)+ ∫G(x;ε)uk/2 + (ε)δ ε /∫uk/2 + (ε)δ ε. Funct. Anal. Appl. 28 (1994) 1, 33-41.         [ Links ]

43 P. J. McKenna & W. Walter, On the Dirichlet Problem for Elliptic Systems, Applicable Analysis 21 (1986), 207-224.         [ Links ]

44 S. Mischler, Kinetic equations with Maxwell boundary conditions, Report, 2001.         [ Links ]

45 S. Mischler, On the trace problem for solutions of the Vlasov equation, Report, 2001.         [ Links ]

46 H. Neunzert, An Introduction to the Nonlinear Boltzmann-Vlasov Equation, Lecture Notes in Math, Springer, New York, 1984.         [ Links ]

47 C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992.         [ Links ]

48 K. Pfaffelmoser, Global classical solution of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eqns. 95 (1992), 281-303.         [ Links ]

49 F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system of plasma physics, Forum Math. 4 (1992), 499-527.         [ Links ]

50 G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Comm. Math. Phys. 135 (1990), 41-78.         [ Links ]

51 G. Rein, Existence of stationary, collisionless plasmas in bounded domains, Math. Meth. Appl. Sci. 15 (1992), 365-374.         [ Links ]

52 Yu. A. Markov, G. A. Rudykh, N. A. Sidorov & A. V. Sinitsyn, Existence of stationary solutions of Vlasov-Maxwell equations and some of their exact solutions, (Russian) Mat. Model 1 (1989) 6, 95-107 .         [ Links ]

53 Y. A. Markov, G. A. Rudykh, N. A. Sidorov & A. V. Sinitsyn, A family of solutions to the Vlasov-Maxwell system and their stability, (Russian) Mat. Model 2 (1990) 12, 88-101.         [ Links ]

54 J. Schaffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys. 104 (1986), 403-421.         [ Links ]

55 V. A. Trenogin, Functional Analysis. Textbook, (Funktsional'nyj analiz. Uchebnoe posobie), (Russian) "Nauka", Moskva, 1980.         [ Links ]

56 S. Ukai & T. Okabe, On classical solution in the large in time of two- dimensional Vlasov equation, Osaka J. Math 15 (1978), 240-261.         [ Links ]

57 M. M. Vajnberg & V. A. Trenogin, Verzweigungstheorie von Läosungen Nicht- linearer Gleichungen, Hauptredaktion fäur physikalisch-mathematische Literatur, (Russian) Verlag, "Nauka" Moskau, 1969.         [ Links ]

58 V. V. Vedenyapin, The boundary problem of the stationary Vlasov-Poisson equations, (Russian) Doklady Acad. Nauk 290 (1986), 777-780.         [ Links ]

59 V. V. Vedenyapin, On the classification of the stationary solutions of the Vlasov's equations over the thore and with boundary conditions, (Russian) Doklady Acad. Nauk 323 (1992), 1004-1006.         [ Links ]

60 V. V. Vedenyapin, Boltzmann and Vlasov Kinetic Equations, (Russian) Izdat. "FIZMATLIT", Moscow, 2001.         [ Links ]

61 A. A. Vlasov, Theory of Multiple Particles. (Russian) Izdat, "Nauka", Moscow, 1950.         [ Links ]

62 A. A. Vlasov, Statistical distribution functions. Izdat, "Nauka", Moscow, 1966.         [ Links ]

63 J. Weckler, The Vlasov-Poisson System on a Bounded Ddomain, Nonlinear Equations in Many-Particle Systems: Abstracts of Intern. Conf., Oberwolfach: Mathematishes Forschungsinstitut, 1993.         [ Links ]

64 S. Wollman, The use of the heat operator in an existence theory problem of the Vlasov equation, TTSP 14 1985, 567-593.         [ Links ]

65 S. Wollman, Global in time solutions to the two-dimensional Vlasov-Poisson system, Comm. Pure Appl. Math 33 (1980), 173-197.         [ Links ]

66 V. Hutson & J. S. Pym, Applications of Functional Analysis and Operator Theory. Mathematics in Science and Engineering, Academic Press, London, 1980.         [ Links ]

67 R. Hirota, The direct method in soliton theory. Translated from the 1992 Japanese original and edited by Atsushi Nagai, Jon Nimmo and Claire Gilson. With a foreword by Jarmo Hietarinta and Nimmo. Cambridge Tracts in Mathematics, 155. Cambridge University Press, Cambridge, 2004.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License