Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.41 suppl.1 Bogotá Oct. 2007
1 Department of Mathematical Sciences, The University of Texas, El Paso, Texas, USA. E-mail: margaez@utep.edu
2 Department of Mathematical Sciences, The University of Texas, El Paso, Texas, USA.
In this paper we present a hybrid path-following algorithm that generates inexact Newton steps suited for solving large scale and/or degenerate nonlinear programs. The algorithm uses as a central region a relaxed notion of the central path, called quasicentral path, a generalized augmented Lagrangian function, weighted proximity measures, and a linesearch within a trust region strategy. We apply a semi-iterative method for obtaining inexact Newton steps by using the conjugate gradient algorithm as an iterative procedure. We present a numerical comparison, and some promising results are reported.
Key words: Interior-point methods, trust region methods, linesearch technique, nonlinear programming, and conjugate gradient.
2000 Mathematics Subject Classification: Primary: 90C30. Secondary: 90C51, 90C06.
En este artículo nosotros presentamos un algoritmo híbrido de seguimiento de camino que genera pasos inexactos de Newton para resolver problemas de gran escala o degenerados para programación no lineal. El algoritmo usa como una region de centralidad una noción mas débil que el bien conocido camino central, llamada camino quasi-central, una generalización de la función aumentada de Lagrange, medidas de aproximación pesadas, y una dirección de búsqueda dentro de una region de verdad. Nosotros aplicamos un método semi-iterativo para obtener direcciones inexactas del método de Newton usando el algoritmo del gradiente conjugado y presentamos una comparación numérica con resultados prometedores.
Palabras clave: Métodos de punto interior, Métodos de región verdadera, técnica de búsqueda de línea, programación nolinear y gradiente conjugado.
Texto completo disponible en PDF
References
1 M. Argáez, An inexact projected Newton method for large scale linear programming, Technical Report, Department of Mathematical Sciences, The University of Texas at El Paso, 2006. [ Links ]
2 M. Argáez, Exact and inexact Newton linesearch interior-point algorithms for nonlinear programming problems, Ph.D Thesis, Department of Computational and Applied Mathematics, Rice University, Houston, Texas, 1997. [ Links ]
3 M. Argáez, H. Klie, M. Ramé & R. A. Tapia, An interior-point Krylov- Orthogonal projection method for nonlinear programming, Tec. Rep. 97-16, Department of Computational and Applied Mathematics, Rice University, Houston, Texas, 1997. [ Links ]
4 M. Argáez & R. A. Tapia, On the global convergence of a modified augmented Lagrangian linesearch interior-point Newton method for nonlinear programming, J. Optim. Theory Appl., 114 (2002), 1-25. [ Links ]
5 M. Argáez, R. A. Tapia & L. Velázquez, Numerical Comparisons of path- following strategies for a primal-dual Interior-Point method for nonlinear programming. J. Optim. Theory Appl., 114 (2002) 4, 255-272. [ Links ]
6 M. Argáez, L. Velázquez & M.C. Villalobos, On the development of a trust region interior-point method for large scale nonlinear programs, ACM Proc. in Diversity of Comput. Conf., (2003), 14-16. [ Links ]
7 M. Argáez, O. Mendez & L. Velázquez, 2005. The notion of the quasicentral path for linear programming, Technical Report, Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, Texas, 2006. [ Links ]
8 R. Byrd, J.C. Gilbert & J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Math. Program. A, 89 (2000), 149-185. [ Links ]
9 J.E. Dennis, Jr., & R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia PA, 1996. [ Links ]
10 M. El-Alem, A global convergence theory for a class of trust region algorithms for constrained optimization, Ph.D Thesis, Rice University, Houston, Texas, (1998). [ Links ]
11 A.S. El-Bakry, R.A. Tapia, T. Tsuchiya & Y. Zhang, On the formulation of the primal-dual interior-point method for nonlinear programming, J. Optim. Theory Appl., 89 (1996), 507-541. [ Links ]
12 N.I.M. Gould, M. E. Hribar, & J. Nocedal, On the solution of equality constrained quadratic programming problems arising in optimization, SIAM J. Sci. Comput., 23 (2001), 1375-1394. [ Links ]
13 M.R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), 303-320. [ Links ]
14 D. Kincaid, & W. Cheney, Numerical analysis: mathematics of scientific computing, 3rd ed., Brooks-Cole, Boston MA, (2002). [ Links ]
15 D.G. Luenberger, Linear and nonlinear programming, 2nd ed., Addison-Wesley, Reading MA, (1984). [ Links ]
16 J. Nocedal & S.J. Wright, Numerical optimization, Springer-Verlag, (1999). [ Links ]
17 R. Sáenz, An inexact Newton interior-point algorithm for nonnegative constrained minimization, Master Thesis, Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, Texas (2003). [ Links ]
18 D.f. Shanno & R. J. Vanderbei, Interior-point methods for nonconvex nonlinear programming: Orderings and higher-order methods, Math. Prog., 87 (2000), 303-316. [ Links ]
19 P. Tseng & Y. Ye, On some interior-point algorithms for nonconvex quadratic optimization, Math. Prog. 93 (2002), 217-225. [ Links ]
20 Y. Zhang, Solving large-scale linear programs by interior-point methods under the MATLAB environment, Optimization Methods and Software, 10 (1998), 1-31. [ Links ]