Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.42 no.2 Bogotá July/Dec. 2008
1Universidad Industrial de Santander, Bucaramanga, Colombia. Email: rcastro@uis.edu.co
In this paper we study the regularity of the solutions for a Robin problem, with a nonlinear term with sub-critical growth respect to a variable. We establish the Sobolev space H1(Ω) as the orthogonal sum of two subspaces, and we give the first step to demonstrate the existence of solutions of our problem.
Key words: Robin problems, trace operators, variational formulation, weaksolutions, Sobolev spaces, bootstrapping, Green formula, orthogonal sum of subspace.
2000 Mathematics Subject Classification: 35B65, 35J25, 35J60, 35P99.
En este artículo estudiamos la regularidad de las soluciones de un problema de Robin, con término no lineal con crecimiento subcrítico respecto a una variable. Expresamos el espacio de Sobolev H1(Ω) como la suma de dos subespacios dando el primer paso para la demostración de existencia de soluciones de nuestro problema.
Palabras clave: Problemas de Robin, operador trazo, formulación variacional, soluciones débiles, espacios de Sobolev, argumento iterativo, formula de Green, suma ortogonalde subespacios.
Texto completo disponible en PDF
References
[1] Arcoya, D. & Villegas, S., `Nontrivial solutions for a Neumann problem with a nonlinear term asymptotically linear at -∞ and superlinear at +∞´, Math.-Z 219, 4 (1995), 499-513.
[2] Aubin, J., Approximation of Elliptic Boundary Value Problems, Wiley-Interscience, New York, 1972. [ Links ]
[3] Baiocchi, C. & Capelo, A., Variational and Quasivariational Inequalities, Aplications to Free-Boundary Problems, John Wiley and Sons, New York, 1984. [ Links ]
[4] Castro, R., `Nontrivial solutions for a Robin problem with a nonlinear term asymptotically linear at -∞ and superlinear at ∞´, Revista Colombiana de Matemáticas, (2008). Este volumen.
[5] Dautray, R. & Lions, J., Analyse MathÉmatique et Calcul NumÉrique; Pour les Sciences et les Techniques, Masson, Paris, 1998. Vol. 3. [ Links ]
[6] Evans, L., Partial Differential Equations, Vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, 1998. [ Links ]
[7] Figueiredo, D. d., Positive Solutions of Semilinear Elliptic Problems, Vol. 957 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1982. [ Links ]
[8] Kufner, A., John, O. & Fucik, S., Function Spaces, Academia, Prague, 1977. [ Links ]
[9] Lions, J. & Magenes, E., `Problèmes aux limites non homogènes (vi)´, Journal D'Analyse Mathématique XI, (1963), 165-188. [ Links ]
[10] Necas, J., Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Prague, 1967. Paris/Academia. [ Links ]
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv42n2a02,
AUTHOR = {Castro T., Rafael A.},
TITLE = {{Regularity of the solutions for a Robin problem and some applications}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2008},
volume = {42},
number = {2},
pages = {127-143}
}