SciELO - Scientific Electronic Library Online

 
vol.44 issue1Rigidity of the Stable Norm on Tori author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.44 no.1 Bogotá Jan./June 2010

 

Commensurator Subgroups of Surface Groups

Subgrupos comensuradores del grupo fundamental de superfícies

OSCAR EDUARDO OCAMPO URIBE1

1Universidade de São Paulo, São Paulo, Brasil. Email: oeocampo@ime.usp.br


Abstract

Let M be a surface, and let H be a subgroup of π1M. In this paper we study the commensurator subgroup C\\pi_1M(H) of π1M, and we extend a result of L. Paris and D. Rolfsen [7], when H is a geometric subgroup of π1M. We also give an application of commensurator subgroups to group representation theory. Finally, by considering certain closed curves on the Klein bottle, we apply a classification of these curves to self-intersection Nielsen theory.

Key words: Commensurator, Fundamental group, Surface.


2000 Mathematics Subject Classification: 20F65, 57M05.

Resumen

Sean M una superfície y H un subgrupo de π1M. En este artículo estudiamos los subgrupos conmensuradores C\\pi_1M(H) de π1M, y extendemos un resultado obtenido por L. Paris y D. Rolfsen en [7], cuando H es un subgrupo geométrico de π1M. También daremos una aplicación de estos subgrupos conmensuradores a la teoría de representaciones de grupos. Finalmente, considerando ciertas curvas cerradas en la botella de Klein, aplicaremos una clasificación de estas curvas a la Teoría de Nielsen de auto-intersección.

Palabras clave: Comensurador, grupo fundamental, superfície.


Texto completo disponible en PDF


References

[1] S. A. Bogatyi, E. A. Kudryavtseva, and H. Zieschang, `On the Coincidence Points of Mappings of a Torus Into a Surface´, (Russian. Russian summary) Tr. Mat. Inst. Steklova 247, (2004), 15-34. Geom. Topol. i Teor. Mnozh, translation in Proc. Steklov Inst. Math. 2004, no. 4 (247), 9-27         [ Links ]

[2] M. Burger and P. d. l. Harpe, `Constructing Irreducible Representations of Discrete Groups´, Proc. Indian Acad. Sci. Math. Sci. 107, 3 (1997), 223-235.         [ Links ]

[3] D. R. J. Chillingworth, `Winding Numbers on Surfaces. II´, Math. Ann. 199, (1972), 131-153.         [ Links ]

[4] H. B. Griffiths, `The Fundamental Group of a Surface, and a Theorem of Schreier´, Acta Math. 110, (1963), 1-17.         [ Links ]

[5] G. W. Mackey, The Theory of Unitary Group Representations, University of Chicago Press, 1976.         [ Links ]

[6] O. E. Ocampo, Subgrupos geométricos e seus comensuradores em grupos de tranças de superfície, Dissertação de Mestrado, Universidade de São Paulo, São Paulo, Brasil, 2009.         [ Links ]

[7] L. Paris and D. Rolfsen, `Geometric Subgroups of Surface Braid Groups´, Ann. Inst. Fourier 49, (1999), 417-472.         [ Links ]

[8] D. Rolfsen, `Braid Subgroup Normalisers, Commensurators and Induced Representations´, Invent. Math. 68, (1997), 575-587.         [ Links ]

[9] G. P. Scott, `Subgroups of Surface Groups are almost Geometric´, J. London Math. Soc. 17, (1978), 555-565.         [ Links ]

(Recibido en junio de 2009. Aceptado en mayo de 2010)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv44n1a01,
    AUTHOR  = {Ocampo Uribe, Oscar Eduardo},
    TITLE   = {{Commensurator Subgroups of Surface Groups}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2010},
    volume  = {44},
    number  = {1},
    pages   = {1-13}
}

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License